【BZOJ1499】【NOI2005】瑰丽华尔兹(动态规划)
【BZOJ1499】瑰丽华尔兹(动态规划)
题面
题解
先写部分分
设\(f[t][i][j]\)表示当前在\(t\)时刻,位置在\(i,j\)时走的最多的步数
这样子每一步要么停要么走
时间复杂度\(O(nmt)\)
得分\(40~70\)分
(据说这样能过???)
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 210
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
char g[MAX][MAX];
int ans,n,m,X,Y,K,L[MAX],R[MAX],D[MAX];
int d[5][2]={0,0,-1,0,1,0,0,-1,0,1};
int f[2][MAX][MAX],T[MAX*MAX];
int main()
{
n=read();m=read();X=read();Y=read();K=read();
for(int i=1;i<=n;++i)scanf("%s",g[i]+1);
for(int i=1;i<=K;++i)L[i]=read(),R[i]=read(),D[i]=read();
for(int i=1;i<=K;++i)
for(int j=L[i];j<=R[i];++j)T[j]=D[i];
memset(f,-1,sizeof(f));
f[0][X][Y]=0;
int nw=1,pw=0;
for(int tt=1;tt<=R[K];++tt,nw^=1,pw^=1)
{
for(int i=1;i<=n;++i)
for(int j=1;j<=m;++j)f[nw][i][j]=-1;
for(int i=1;i<=n;++i)
for(int j=1;j<=m;++j)
{
if(f[pw][i][j]==-1)continue;
int xx=i+d[T[tt]][0],yy=j+d[T[tt]][1];
f[nw][i][j]=max(f[nw][i][j],f[pw][i][j]);
if(xx<1||yy<1||xx>n||yy>m)continue;
if(g[xx][yy]=='x')continue;
f[nw][xx][yy]=max(f[nw][xx][yy],f[pw][i][j]+1);
}
}
for(int i=1;i<=n;++i)
for(int j=1;j<=m;++j)
ans=max(ans,f[R[K]&1][i][j]);
printf("%d\n",ans);
return 0;
}
发现转移可以用单调队列优化
于是分四种情况进行讨论
用单调队列优化转移即可
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 210
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
char g[MAX][MAX];
int ans,n,m,X,Y,K,L[MAX],R[MAX],D[MAX];
int d[5][2]={0,0,-1,0,1,0,0,-1,0,1};
int f[2][MAX][MAX],T[MAX*MAX];
int Q[MAX],h,t;
int main()
{
n=read();m=read();X=read();Y=read();K=read();
for(int i=1;i<=n;++i)scanf("%s",g[i]+1);
for(int i=1;i<=K;++i)L[i]=read(),R[i]=read(),D[i]=read();
for(int i=1;i<=n;++i)
for(int j=1;j<=m;++j)f[0][i][j]=-1e9;
f[0][X][Y]=0;
int nw=1,pw=0;
for(int tt=1;tt<=K;++tt,nw^=1,pw^=1)
{
for(int i=1;i<=n;++i)
for(int j=1;j<=m;++j)f[nw][i][j]=f[pw][i][j];
if(D[tt]==1)
for(int j=1;j<=m;++j)
{
h=1;t=0;
for(int i=n;i;--i)
{
if(g[i][j]=='x'){h=1;t=0;continue;}
while(h<=t&&Q[h]-i>R[tt]-L[tt]+1)++h;
while(h<=t&&f[pw][Q[t]][j]+Q[t]<=f[pw][i][j]+i)--t;
Q[++t]=i;
if(h<=t)f[nw][i][j]=f[pw][Q[h]][j]+Q[h]-i;
}
}
else if(D[tt]==2)
for(int j=1;j<=m;++j)
{
h=1;t=0;
for(int i=1;i<=n;++i)
{
if(g[i][j]=='x'){h=1;t=0;continue;}
while(h<=t&&i-Q[h]>R[tt]-L[tt]+1)++h;
while(h<=t&&f[pw][Q[t]][j]-Q[t]<=f[pw][i][j]-i)--t;
Q[++t]=i;
if(h<=t)f[nw][i][j]=f[pw][Q[h]][j]+i-Q[h];
}
}
else if(D[tt]==3)
for(int i=1;i<=n;++i)
{
h=1;t=0;
for(int j=m;j;--j)
{
if(g[i][j]=='x'){h=1;t=0;continue;}
while(h<=t&&Q[h]-j>R[tt]-L[tt]+1)++h;
while(h<=t&&f[pw][i][Q[t]]+Q[t]<=f[pw][i][j]+j)--t;
Q[++t]=j;
if(h<=t)f[nw][i][j]=f[pw][i][Q[h]]+Q[h]-j;
}
}
else
for(int i=1;i<=n;++i)
{
h=1;t=0;
for(int j=1;j<=m;++j)
{
if(g[i][j]=='x'){h=1;t=0;continue;}
while(h<=t&&j-Q[h]>R[tt]-L[tt]+1)++h;
while(h<=t&&f[pw][i][Q[t]]-Q[t]<=f[pw][i][j]-j)--t;
Q[++t]=j;
if(h<=t)f[nw][i][j]=f[pw][i][Q[h]]+j-Q[h];
}
}
}
for(int i=1;i<=n;++i)
for(int j=1;j<=m;++j)
ans=max(ans,f[K&1][i][j]);
printf("%d\n",ans);
return 0;
}
【BZOJ1499】【NOI2005】瑰丽华尔兹(动态规划)的更多相关文章
- bzoj1499[NOI2005]瑰丽华尔兹 单调队列优化dp
1499: [NOI2005]瑰丽华尔兹 Time Limit: 3 Sec Memory Limit: 64 MBSubmit: 1802 Solved: 1097[Submit][Status ...
- [Bzoj1499][NOI2005]瑰丽华尔兹[简单DP]
1499: [NOI2005]瑰丽华尔兹 Time Limit: 3 Sec Memory Limit: 64 MBSubmit: 1714 Solved: 1042[Submit][Status ...
- BZOJ1499:[NOI2005]瑰丽华尔兹(DP,单调队列)
Description 你跳过华尔兹吗?当音乐响起,当你随着旋律滑动舞步,是不是有一种漫步仙境的惬意?众所周知,跳华尔兹时,最重要的是有好的音乐.但是很少有几个人知道,世界上最伟大的钢琴家一生都漂泊在 ...
- BZOJ1499 [NOI2005]瑰丽华尔兹 【单调队列优化dp】
题目 你跳过华尔兹吗?当音乐响起,当你随着旋律滑动舞步,是不是有一种漫步仙境的惬意?众所周知,跳华尔兹时,最重要的是有好的音乐.但是很少有几个人知道,世界上最伟大的钢琴家一生都漂泊在大海上,他的名字叫 ...
- BZOJ1499: [NOI2005]瑰丽华尔兹(dp)
Description 你跳过华尔兹吗?当音乐响起,当你随着旋律滑动舞步,是不是有一种漫步仙境的惬意?众所周知,跳华尔兹时,最重要的是有好的音乐.但是很少有几个人知道,世界上最伟大的钢琴家一生都漂泊在 ...
- bzoj1499: [NOI2005]瑰丽华尔兹
dp. 首先我们可以看到每个时间段只能往一个方向转移最多t步(t为时间段的长度),所以我们可以按时间段dp.因为这个前后值互不影响,也不用占用这一维空间就可以省去. 然后每个时间段内是一列一列(行) ...
- Vijos1834 NOI2005 瑰丽华尔兹 动态规划 单调双端队列优化
设dp[t][x][y]表示处理完前t个时间段,钢琴停留在(x,y)处,最多可以走多少个格子 转移时只需逆着当前倾斜的方向统计len个格子(len为时间区间的长度,len=t-s+1),如果遇到障碍就 ...
- bzoj千题计划216:bzoj1499: [NOI2005]瑰丽华尔兹
http://www.lydsy.com/JudgeOnline/problem.php?id=1499 预处理从每个位置向每个方向最多能走几步 dp[k][i][j] 第k个时间段后,钢琴到位置(i ...
- 2018.09.10 bzoj1499: [NOI2005]瑰丽华尔兹(单调队列优化dp)
传送门 单调队列优化dp好题. 这题其实很简单. 我们很容易想到一个O(T∗n∗m)" role="presentation" style="position: ...
- bzoj1499: [NOI2005]瑰丽华尔兹&&codevs1748 单调队列优化dp
这道题 网上题解还是很多很好的 强烈推荐黄学长 码风真的好看 神犇传送门 学习学习 算是道单调队列优化dp的裸题吧 #include<cstdio> #include<cstring ...
随机推荐
- hadoop组件概念理解
一.HADOOP 二.HIVE 三.SQOOP 1.来由和作用 sqoop由一些封装好的MR程序的jar包构成,后演变成框架,但sqoop只有map任务没有reduce任务. 用于 hdfs.hive ...
- Go入门指南
第一部分:学习 Go 语言 第1章:Go 语言的起源,发展与普及 1.1 起源与发展 1.2 语言的主要特性与发展的环境和影响因素 第2章:安装与运行环境 2.1 平台与架构 2.2 Go 环境变量 ...
- Sqlmap常用命令大全
1 Options(选项) -h,--help 显示帮助消息-hh 显示详细帮助-version -v VERBOSE 详细级别 0-6 默认12 Target 目标-u URL--url=URL-g ...
- 【转】Java生成plist下载ipa文件
我们在上传ipa想要安装的时候必须要通过plist文件去下载,并且还要遵循 itms-services协议. 意思就是,第一步我们要生成一个plist文件, 第二步生成一个html文件,用来指向pli ...
- 第一章 HTML介绍
1.1 Html和CSS的关系 学习web前端开发基础技术需要掌握:HTML.CSS.JavaScript语言.下面我们就来了解下这三门技术都是用来实现什么的: 1. HTML是网页内容的载体.内容就 ...
- webpack入门指南-step02
webpack 安装 1)安装前的准备:webpack是基于node环境的项目,所以使用前必须先安装node和npm. 在安装 Webpack 前,你本地环境需要支持 node.js.如果电脑没有装过 ...
- java第二次试验报告
北京电子科技学院(BESTI) 实 验 报 告 课程:Java程序设计 班级:1353 姓名:郭皓 学号:20135327 成绩: 指导 ...
- Journal entry of the thirteenth chapter to chapter seventeenth(第十三章和十七章阅读与疑问)
第十三章: 软件测试的意义在于: a. 发现软件错误: b. 有效定义和实现软件成分由低层到高层的组装过程: c. 验证软件是否满足任务书和系统定义文档所规定的技术要求: d. ...
- Journal entry of the eleventh chapter to chapter twelfth
第十一章:正如很多人一样,觉得软件工程这个课程好像没什么用,感觉提高不了自己的写代码能力,学的都是理论知识,好像对于我们这种技术类的专业离得有点远,是这样的吗? 第十二章:每样东西都没有完美的,即使我 ...
- 【CS231N】6、神经网络动态部分:损失函数等
一.疑问 二.知识点 1. 损失函数可视化 损失函数一般都是定义在高维度的空间中,这样要将其可视化就很困难.然而办法还是有的,在1个维度或者2个维度的方向上对高维空间进行切片,例如,随机生成一个权 ...