[SDOI2018]战略游戏 圆方树,树链剖分
[SDOI2018]战略游戏
这题是道路相遇(题解)的升级版,询问的两个点变成了\(S\)个点。
还是先建出圆方树,考虑对于询问的\(S\)个点,答案就是圆方树上能包含这些点的最小连通块中的圆点个数减去\(S\)。问题变成了怎样求这样的连通块中的圆点个数,直接给结论吧:先搞出树的dfs序,把询问的点按dfs序从小到大排一遍序,每次把答案加上第\(i\)和第\(i + 1\)个点之间的圆点个数,但是不算lca,再加上第\(1\)个和第\(S\)个点之间的圆点个数,然后除以二就得到了这个连通块内不包括整个连通块的lca的圆点个数,可以证明这个连通块内除了lca的所有点都被算了两次,最后判断一下lca是不是圆点,减去\(S\)就是答案。
实测树剖比倍增快很多。
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
#define R register
#define I inline
#define B 10000000
using namespace std;
const int N = 400003;
char buf[B], *p1, *p2;
I char gc() { return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, B, stdin), p1 == p2) ? EOF : *p1++; }
I int rd() {
R int f = 0; R char c = gc();
while (c < 48 || c > 57)
c = gc();
while (c > 47 && c < 58)
f = f * 10 + (c ^ 48), c = gc();
return f;
}
int h[N], H[N], sta[N], dfn[N], low[N], vis[N], fa[N], dep[N], siz[N], son[N], top[N], dis[N], q[N], n, c, tim, cnt, stp;
struct edge { int s, g; }e[N], E[N];
I void add(int x, int y) { e[++c] = (edge){h[x], y}, h[x] = c; }
I void Add(int x, int y) { E[++c] = (edge){H[x], y}, H[x] = c; }
I int min(int x, int y) { return x < y ? x : y; }
I int cmp(int x, int y) { return dfn[x] < dfn[y]; }
void dfs(int x) {
vis[sta[++stp] = x] = 1, dfn[x] = low[x] = ++tim;
for (R int i = h[x], y, z; i; i = e[i].s)
if (!dfn[y = e[i].g]) {
dfs(y), low[x] = min(low[x], low[y]);
if (low[y] >= dfn[x]) {
Add(++cnt, x), Add(x, cnt);
do {
vis[z = sta[stp--]] = 0, Add(cnt, z), Add(z, cnt);
} while (z ^ y);
}
}
else
low[x] = min(low[x], dfn[y]);
}
void dfs1(int x, int f) {
fa[x] = f, dep[x] = dep[f] + 1, siz[x] = 1, dis[x] = dis[f] + (x <= n);
for (R int i = H[x], y, m = 0; i; i = E[i].s)
if ((y = E[i].g) ^ f) {
dfs1(y, x), siz[x] += siz[y];
if (siz[y] > m)
m = siz[x], son[x] = y;
}
}
void dfs2(int x, int r) {
dfn[x] = ++tim, top[x] = r;
if (son[x])
dfs2(son[x], r);
for (R int i = H[x], y; i; i = E[i].s)
if ((y = E[i].g) ^ fa[x] && y ^ son[x])
dfs2(y, y);
}
I int lca(int x, int y) {
while (top[x] ^ top[y])
dep[top[x]] > dep[top[y]] ? x = fa[top[x]] : y = fa[top[y]];
return dep[x] < dep[y] ? x : y;
}
I int query(int x, int y) { return dis[x] + dis[y] - (dis[lca(x, y)] << 1); }
int main() {
R int T = rd(), m, Q, S, i, x, y, ans;
while (T--) {
memset(h, 0, sizeof h), memset(H, 0, sizeof H), memset(son, 0, sizeof son), memset(dfn, 0, sizeof dfn);
cnt = n = rd(), m = rd(), c = 0;
for (i = 1; i <= m; ++i)
x = rd(), y = rd(), add(x, y), add(y, x);
c = tim = stp = 0, dfs(1), tim = 0, dfs1(1, 0), dfs2(1, 1), Q = rd();
while (Q--) {
S = rd();
for (i = 1; i <= S; ++i)
q[i] = rd();
sort(q + 1, q + S + 1, cmp), ans = query(q[1], q[S]);
for (i = 2; i <= S; ++i)
ans += query(q[i - 1], q[i]);
printf("%d\n", (ans >> 1) - S + (lca(q[1], q[S]) <= n));
}
}
return 0;
}
[SDOI2018]战略游戏 圆方树,树链剖分的更多相关文章
- bzoj5315/luoguP4517 [SDOI2018]战略游戏(圆方树,虚树)
bzoj5315/luoguP4517 [SDOI2018]战略游戏(圆方树,虚树) bzoj Luogu 题目描述略(太长了) 题解时间 切掉一个点,连通性变化. 上圆方树. $ \sum |S| ...
- Luogu4606 SDOI2018 战略游戏 圆方树、虚树、链并
传送门 弱化版 考虑到去掉一个点使得存在两个点不连通的形式类似割点,不难想到建立圆方树.那么在圆方树上对于给出的关键点建立虚树之后,我们需要求的就是虚树路径上所有圆点的数量减去关键点的数量. 因为没有 ...
- BZOJ5329:[SDOI2018]战略游戏(圆方树,虚树)
Description 省选临近,放飞自我的小Q无心刷题,于是怂恿小C和他一起颓废,玩起了一款战略游戏. 这款战略游戏的地图由n个城市以及m条连接这些城市的双向道路构成,并且从任意一个城市出发总能沿着 ...
- BZOJ.5329.[SDOI2018]战略游戏(圆方树 虚树)
题目链接 显然先建圆方树,方点权值为0圆点权值为1,两点间的答案就是路径权值和减去起点终点. 对于询问,显然可以建虚树.但是只需要计算两关键点间路径权值,所以不需要建出虚树.统计DFS序相邻的两关键点 ...
- Luogu P4606 [SDOI2018] 战略游戏 圆方树 虚树
https://www.luogu.org/problemnew/show/P4606 把原来的图的点双联通分量缩点(每个双联通分量建一个点,每个割点再建一个点)(用符合逻辑的方式)建一棵树(我最开始 ...
- [bzoj5329] P4606 [SDOI2018]战略游戏
P4606 [SDOI2018]战略游戏:广义圆方树 其实会了圆方树就不难,达不到黑,最多算个紫 那个转换到圆方树上以后的处理方法,画画图就能看出来,所以做图论题一定要多画图,并把图画清楚点啊!! 但 ...
- 洛谷P4606 [SDOI2018]战略游戏 [广义圆方树]
传送门 思路 先考虑两点如何使他们不连通. 显然路径上所有的割点都满足条件. 多个点呢?也是这样的. 于是可以想到圆方树.一个点集的答案就是它的虚树里圆点个数减去点集大小. 可以把点按dfs序排序,然 ...
- 洛谷P4606 [SDOI2018]战略游戏 【圆方树 + 虚树】
题目链接 洛谷P4606 双倍经验:弱化版 题解 两点之间必经的点就是圆方树上两点之间的圆点 所以只需建出圆方树 每次询问建出虚树,统计一下虚树边上有多少圆点即可 还要讨论一下经不经过根\(1\)的情 ...
- [SDOI2018]战略游戏(圆方树+虚树)
喜闻乐见的圆方树+虚树 图上不好做,先建出圆方树. 然后答案就是没被选到的且至少有两条边可以走到被选中的点的圆点的数量. 语文不好,但结论画画图即可得出. 然后套路建出虚树. 发现在虚树上DP可以得出 ...
随机推荐
- 可以简易设置文字内边距的EdgeInsetsLabel
可以简易设置文字内边距的EdgeInsetsLabel 最终效果: 源码: EdgeInsetsLabel.h 与 EdgeInsetsLabel.m // // EdgeInsetsLabel.h ...
- elastic search报错——“failed to obtain node locks”
启动时报错信息: 这里写图片描述 寻找主要信息:failed to obtain node locks这里写图片描述简单理解为:绑定节点失败!!! 百度后,好多人同样遇到了这个问题,导致的原因可能是因 ...
- Celery学习--- Celery操作之定时任务
celery支持定时任务,设定好任务的执行时间,celery就会定时自动帮你执行, 这个定时任务模块叫celery beat 文件定时执行任务 项目前提: 安装并启动Redis celery_Sche ...
- centos7.4 nfs-2.3.2
http://www.linuxfromscratch.org/blfs/view/svn/basicnet/libtirpc.html 注释:安装环境centos7.4; 安装完软件成后会升级系 ...
- 02-urllib库的get请求方式
对于urllib中的get请求方式,可以直接传入url的连接即可访问页面,但是对于要传入关键字的话,也可以用quote进行编码再传入. 案例如下: #get请求搜索参数如何添加 import urll ...
- 教你用 jVectorMap 制作属于自己的旅行足迹
jVectorMap JVectorMap 是一个优秀的.兼容性强的 jQuery 地图插件. 它可以工作在包括 IE6 在内的各款浏览器中,矢量图输出,除官方提供各国地图数据外,用户可以使用数据转换 ...
- APP分析之海豚睡眠
APP分析之海豚睡眠 产品:海豚睡眠 引文 由于笔者暑假经常晚睡,导致在习惯性失眠.长时间睡眠不足,导致头脑反应迟钝,还整日无精打采,不知所措.一个偶然的机会,在一个燥热的夜晚,眼看又是一个不眠之夜, ...
- [李居丽][다이아몬드][Diamond]
歌词来源:http://music.163.com/#/song?id=484056974 作曲 : Damon Sharpe/JOHN HO/JEFF SHUM [作曲 : Damon Sharpe ...
- NSProxy应用例子
动态代理模式的应用很多,特别是在不能修改被代理类的前提下,要对执行某些方法时需要打log或者捕捉异常等处理时,是一个非常方便的方法.只需要少量修改客户端(场景类)代码和添加一个代理类就可以实现,这个符 ...
- 1050. [HAOI2006]旅行【并查集+枚举】
Description 给你一个无向图,N(N<=500)个顶点, M(M<=5000)条边,每条边有一个权值Vi(Vi<30000).给你两个顶点S和T,求 一条路径,使得路径上最 ...