本文要点刚要:

(一)读文本文件格式的数据函数:read_csv,read_table

1.读不同分隔符的文本文件,用参数sep

2.读无字段名(表头)的文本文件 ,用参数names

3.为文本文件制定索引,用index_col

4.跳行读取文本文件,用skiprows

5.数据太大时需要逐块读取文本数据用chunksize进行分块。

(二)将数据写成文本文件格式函数:to_csv

范例如下:

(一)读取文本文件格式的数据集

1.read_csv和read_table的区别:

 #read_csv默认读取用逗号分隔符的文件,不需要用sep来指定分隔符

import pandas as pd
pd.read_csv('C:\\Users\\xiaoxiaodexiao\\pythonlianxi\\test0424\\data.csv')

 

#read_csv如果读的是用非逗号分隔符的文件,必须要用sep指定分割符,不然读出来的是原文件的样子,数据没被分割开
import pandas as pd
pd.read_csv('C:\\Users\\xiaoxiaodexiao\\pythonlianxi\\test0424\\data.txt')

  

#与上面的例子可以对比一下区别
import pandas as pd
pd.read_csv('C:\\Users\\xiaoxiaodexiao\\pythonlianxi\\test0424\\data.txt',sep='|')

  

#read_table读取文件时必须要用sep来指定分隔符,否则读出来的数据是原始文件,没有分割开。
import pandas as pd
pd.read_table('C:\\Users\\xiaoxiaodexiao\\pythonlianxi\\test0424\\data.csv')

 

#read_table读取数据必须指定分隔符
import pandas as pd
pd.read_table('C:\\Users\\xiaoxiaodexiao\\pythonlianxi\\test0424\\data.txt',sep='|')

  

2.读取文本文件时不用header和names指定表头时,默认第一行为表头

#用header=None表示数据集没有表头,会默认用阿拉伯数字填充表头和索引
pd.read_table('C:\\Users\\xiaoxiaodexiao\\pythonlianxi\\test0424\\data.txt',sep='|',header=None)

  

#用names可以自定义表头
pd.read_table('C:\\Users\\xiaoxiaodexiao\\pythonlianxi\\test0424\\data.txt',sep='|',
names=['x1','x2','x3','x4','x5'])

 

3.默认用阿拉伯数字指定索引;用index_col指定某一列作为索引

names=['x1','x2','x3','x4','x0']
pd.read_table('C:\\Users\\xiaoxiaodexiao\\pythonlianxi\\test0424\\data.txt',sep='|',
names=names,index_col='x0')

  

4.以下示例是用skiprows将hello对应的行跳过后读取其他行数据,不管首行是否作为表头,都是将表头作为第0行开始数

可以对比一下三个例子的区别进行理解

pd.read_csv('C:\\Users\\xiaoxiaodexiao\\pythonlianxi\\test0424\\data1.txt')

names=['x1','x2','x3','x4','x0']
pd.read_csv('C:\\Users\\xiaoxiaodexiao\\pythonlianxi\\test0424\\data1.txt',names=names,
skiprows=[0,3,6])

  

pd.read_csv('C:\\Users\\xiaoxiaodexiao\\pythonlianxi\\test0424\\data1.txt',
skiprows=[0,3,6])

  

pd.read_csv('C:\\Users\\xiaoxiaodexiao\\pythonlianxi\\test0424\\data1.txt',header=None,
skiprows=[0,3,6])

  

5.分块读取,data1.txt中总共8行数据,按照每块3行来分,会读3次,第一次3行,第二次3行,第三次1行数据进行读取。

注意这里在分块的时候跟跳行读取不同的是,表头没作为第一行进行分块读取,可通过一下两个例子对比进行理解。

chunker = pd.read_csv('C:\\Users\\xiaoxiaodexiao\\pythonlianxi\\test0424\\data1.txt',chunksize=3)
for m in chunker:
print(len(m))
print m

  

chunker = pd.read_csv('C:\\Users\\xiaoxiaodexiao\\pythonlianxi\\test0424\\data1.txt',header=None,
chunksize=3)
for m in chunker:
print(len(m))
print m

  

(二)将数据写入文本格式用to_csv

以data.txt为例,注意写出文件时,将索引也写入了

data=pd.read_table('C:\\Users\\xiaoxiaodexiao\\pythonlianxi\\test0424\\data.txt',sep='|')
print data

  

#可以用index=False禁止索引的写入。
data=pd.read_table('C:\\Users\\xiaoxiaodexiao\\pythonlianxi\\test0424\\data.txt',sep='|')
data.to_csv('C:\\Users\\xiaoxiaodexiao\\pythonlianxi\\test0424\\outdata.txt',sep='!',index=False)

  

#可以用columns指定写入的列
data=pd.read_table('C:\\Users\\xiaoxiaodexiao\\pythonlianxi\\test0424\\data.txt',sep='|')
data.to_csv('C:\\Users\\xiaoxiaodexiao\\pythonlianxi\\test0424\\outdata2.txt',sep=',',index=False,
columns=['a','c','d'])

  

 

 

 

python读取文本文件数据的更多相关文章

  1. Windows下Python读取GRIB数据

    之前写了一篇<基于Python的GRIB数据可视化>的文章,好多博友在评论里问我Windows系统下如何读取GRIB数据,在这里我做一下说明. 一.在Windows下Python为什么无法 ...

  2. Python读取JSON数据,并解决字符集不匹配问题

    今天来谈一谈Python解析JSON数据,并写入到本地文件的一个小例子. – 思路如下 从一个返回JSON天气数据的网站获取到目标JSON数据串 使用Python解析出需要的部分 写入到本地文件,供其 ...

  3. python 读取excel数据并将测试结果填入Excel

    python 读取excel数据并将测试结果填入Excel 读取一个Excel中的一条数据用例,请求接口,然后返回结果并反填到excel中.过程中会生成请求回来的文本,当然还会生成一个xml文件.具体 ...

  4. python读取文本文件

    1. 读取文本文件 代码: f = open('test.txt', 'r') print f.read() f.seek(0) print f.read(14) f.seek(0) print f. ...

  5. 利用Python读取外部数据文件

      不论是数据分析,数据可视化,还是数据挖掘,一切的一切全都是以数据作为最基础的元素.利用Python进行数据分析,同样最重要的一步就是如何将数据导入到Python中,然后才可以实现后面的数据分析.数 ...

  6. Python读取文件数据

    1题目要求: 文本文件有这些数据,需要的只有其中的5个属性,如下颜色标记 像以下的数据达到75万组: 1product/productId: B0000UIXZ4 2product/title: Ti ...

  7. Python读取Excel数据并根据列名取值

    一直想将自己接触到的东西梳理一遍,可就是迈不出第一步,希望从这篇总结开始不要再做行动的矮人了. 最近测试过程中需要用到python读取excel用例数据,于是去了解和学习了下xlrd库,这里只记录使用 ...

  8. python——读取MATLAB数据文件 *.mat

    鉴于以后的目标主要是利用现有的Matlab数据(.mat或者.txt),主要考虑python导入Matlab数据的问题.以下代码可以解决python读取.mat文件的问题.主要使用sicpy.io即可 ...

  9. python 读取二进制数据到可变缓冲区中

    想直接读取二进制数据到一个可变缓冲区中,而不需要做任何的中间复制操作.或者你想原地修改数据并将它写回到一个文件中去. 为了读取数据到一个可变数组中,使用文件对象的readinto() 方法.比如 im ...

随机推荐

  1. redis入门(03)redis的配置

    一.配置文件 Redis 的配置文件位于 Redis 安装目录下,文件名为 redis.conf.你可以通过 CONFIG 命令查看或设置配置项. 二.查看修改 1.查看配置 1.1.vi redis ...

  2. 错误解决:HibernateSystemException-HHH000142: Javassist Enhancement failed

     今天做项目报了一个错误 错误的原因是: 有级联查询的时候,一对多,多对一配置时要考虑默认延迟加载的问题,需要把延迟加载关闭. 然后就能正确查询出结果了  补充知识: 延迟加载表现在:比如:我们要查询 ...

  3. CentOS7配置php7.0支持redis

    配置之前应该是环境已经搭好了,phpinfo的页面可以加载出来. 使用git clone下载git上的phpredis扩展包 [root@VM_103_117_centos ]#git clone   ...

  4. python/数据类型和变量

    数据类型和变量 数据类型 计算机顾名思义就是可以做数学计算的机器,因此,计算机程序理所当然地可以处理各种数值.但是, 计算机能处理的远不止数值,还可以处理文本.图形.音频.视频.网页等各种各样的数据, ...

  5. 移动端,input输入框被手机输入法解决方案

    当界面元素靠下时候的时候,input输入框会被系统的键盘遮挡. 我们可以让界面向上移动一定距离去避免遮挡. $('#money').click(function(){ setTimeout(funct ...

  6. linux查看日志文件内容命令tail、cat、tac、head、echo

    linux查看日志文件内容命令tail.cat.tac.head.echo tail -f test.log你会看到屏幕不断有内容被打印出来. 这时候中断第一个进程Ctrl-C, ---------- ...

  7. scrapy安装教程

    Step 1 •安装Python2.7(32位版本) –https://www.python.org/downloads/release/python-279/ Setp 2 •打开"运行& ...

  8. JavaScript 中常见的内存泄露陷阱(摘)

    内存泄露是每个开发者最终都不得不面对的问题.即便使用自动内存管理的语言,你还是会碰到一些内存泄漏的情况.内存泄露会导致一系列问题,比如:运行缓慢,崩溃,高延迟,甚至一些与其他应用相关的问题. 什么是内 ...

  9. 如何在Shell读取文件并赋值

    sys_info=$(cat /usr/local/sysconfig.txt)var=`echo   $sys_info   |   awk   -F ', '   '{print   $0} '  ...

  10. [LeetCode] Coin Change 2 硬币找零之二

    You are given coins of different denominations and a total amount of money. Write a function to comp ...