题链:

http://www.lydsy.com/JudgeOnline/problem.php?id=2669

题解:

容斥,DP,DFS

先看看 dp 部分:
首先呢,X的个数不会超过 8个
个数很少,所以考虑状压,把需要填 X的那几个位置状压为二进制10表示对应的那个X位置是否已经填数。
同时填的数互不重复,考虑从小填到大。
cnt[S] 表示除了不在集合 S 里的 X 位置及其周围的位置,剩下的位置个数
定义 dp[i][S]表示从小到大填数填完了i这个数,且已经填了的 S 这个集合里的 X 位置的方案数
转移:依次去填数 1~N*M,每次有两种选择:
1).把这个数填在 某个 X 位置(枚举一个 k表示第 k个 X 位置填当前数)
dp[i][S]+=dp[i-1][S^(1<<(k-1))]

2).把这个数填在非 X 位置,那么填的位置有 cnt[S]-(i-1) 种。
dp[i][s]+=dp[i-1][s]*(cnt[s]-(i-1)) (好好理解一下这个转移)

这样 dp 可以保证那些给出的 X 位置一定是局部最小值,
因为第二种转移的填数位置都不能填在还没有填数的 X 位置的周围。
所以就完了么?
当然还没有,尽管我们保证了给出的 X 位置一定是局部最小值,
但是没有保证非 X位置一定不是非局部最小值。即,求出来的 dp[N*M][all_S(全集)]的意思是至少all_S集合里的 X位置为局部最小值的方案数
所以容斥如下:
ANS = 至少多填了0个局部最小值的方案数(dp[N*M][all_S])
          -至少多填了1个局部最小值的方案数
         +至少多填了2个局部最小值的方案数
          -....+ ....
这些用于容斥的方案数的求法:
DFS 搜索出哪些非 X 位置还可以改为 X ,
然后对于每一种新的填法,去跑一遍上述的dp即可求得对应的方案数。

代码:

#include<cstdio>
#include<cstring>
#include<iostream>
#define _ % mod
#define filein(x) freopen(#x".in","r",stdin);
#define fileout(x) freopen(#x".out","w",stdout);
using namespace std;
const int mv[9][2]={{0,0},{-1,0},{-1,1},{0,1},{1,1},{1,0},{1,-1},{0,-1},{-1,-1}};
const int mod=12345678;
char mp[10][10];
int N,M,ANS;
int solve(){
static bool vis[10][10];
static int dp[30][1<<8],cnt[1<<8],x[10],y[10],tot,tmp;
tot=0; memset(dp,0,sizeof(dp));
for(int i=1;i<=N;i++)
for(int j=1;j<=M;j++) if(mp[i][j]=='X')
tot++,x[tot]=i,y[tot]=j;
for(int s=0;s<1<<tot;s++){
tmp=0; memset(vis,0,sizeof(vis));
for(int i=1;i<=tot;i++) if(!(s&(1<<(i-1))))
for(int k=0;k<9;k++)
vis[x[i]+mv[k][0]][y[i]+mv[k][1]]=1;
for(int i=1;i<=N;i++)
for(int j=1;j<=M;j++)
if(!vis[i][j]) tmp++;
cnt[s]=tmp;
}
dp[0][0]=1;
for(int i=1;i<=N*M;i++)
for(int s=0;s<1<<tot;s++){
dp[i][s]=(1ll*dp[i][s]+1ll*dp[i-1][s]*max(cnt[s]-(i-1),0)_)_;
for(int k=1;k<=tot;k++) if(s&(1<<(k-1)))
dp[i][s]=(1ll*dp[i][s]+dp[i-1][s^(1<<(k-1))])_;
}
return dp[N*M][(1<<tot)-1];
}
void dfs(int x,int y,int t){
if(y==M+1){dfs(x+1,1,t);return;}
if(x==N+1){
int tmp=solve();
if(t&1) tmp=(-1ll*tmp+mod)_;
ANS=((1ll*ANS+tmp)_+mod)_;
return;
}
dfs(x,y+1,t);
bool fg=1;
for(int k=0;k<9;k++)
if(mp[x+mv[k][0]][y+mv[k][1]]=='X') fg=0;
if(fg){
mp[x][y]='X';
dfs(x,y+1,t+1);
mp[x][y]='.';
}
}
int main()
{
scanf("%d%d",&N,&M);
for(int i=1;i<=N;i++)
scanf("%s",mp[i]+1);
dfs(1,1,0);
printf("%d",ANS);
return 0;
}

●BZOJ 2669 [cqoi2012]局部极小值的更多相关文章

  1. bzoj 2669 [cqoi2012]局部极小值 DP+容斥

    2669: [cqoi2012]局部极小值 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 838  Solved: 444[Submit][Status ...

  2. BZOJ 2669 CQOI2012 局部极小值 状压dp+容斥原理

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2669 题意概述:实际上原题意很简洁了我就不写了吧.... 二话不说先观察一下性质,首先棋盘 ...

  3. 【BZOJ 2669】 2669: [cqoi2012]局部极小值 (状压DP+容斥原理)

    2669: [cqoi2012]局部极小值 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 667  Solved: 350 Description 有一 ...

  4. bzoj2669[cqoi2012]局部极小值 容斥+状压dp

    2669: [cqoi2012]局部极小值 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 774  Solved: 411[Submit][Status ...

  5. [BZOJ2669] [cqoi2012]局部极小值

    [BZOJ2669] [cqoi2012]局部极小值 Description 有一个n行m列的整数矩阵,其中1到nm之间的每个整数恰好出现一次.如果一个格子比所有相邻格子(相邻是指有公共边或公共顶点) ...

  6. P3160 [CQOI2012]局部极小值

    题目 P3160 [CQOI2012]局部极小值 一眼就是状压,接下来就不知道了\(qwq\) 做法 我们能手玩出局部小值最多差不多是\(8,9\)个的样子,\(dp_{i,j}\)为填满\(1~i\ ...

  7. P3160 [CQOI2012]局部极小值 题解(状压DP+容斥)

    题目链接 P3160 [CQOI2012]局部极小值 双倍经验,双倍快乐 解题思路 存下来每个坑(极小值点)的位置,以这个序号进行状态压缩. 显然,\(4*7\)的数据范围让极小值点在8个以内(以下示 ...

  8. BZOJ 2669 Luogu P3160 [CQOI2012]局部极小值 (容斥原理、DP)

    题目链接 (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=2669 (luogu) https://www.luogu.org/prob ...

  9. BZOJ 2669 【CQOI2012】 局部极小值

    题目链接:局部极小值 这是一道\(dp\)好题. 由于需要保证某些位置比周围都要小,那么我们可以从小到大把每个数依次填入,保证每个局部极小值填入之前周围都不能填,就只需要在加入的时候计数了. 由于局部 ...

随机推荐

  1. 同一个页面同时拥有collectionView和navigationBar和tabBar时可能遇到的问题

    写一个页面的时候,遇到了页面加载时候collectionView的最下面少了49个像素的位置,切换去别的页面之后,再返回,又变回正常,多方求解无果后,发现原来是系统自带的适应功能导致的,加入以下代码即 ...

  2. vue-router 组件实例被复用问题

    最近在开发过程中遇到如下问题: 当前路由是这样的 http://127.0.0.1:3010/order?keywords=22 只改变keywords的值,路由不跳转 http://127.0.0. ...

  3. 织梦dedecms默认网站地图sitemap.html优化

    网站地图对于网站优化很重要,搜索引擎就是靠网站地图去收录网站页面,本文主要讲解优化织梦自带的网站地图功能.     织梦自带的网站地图使用方法:织梦后台--生成--HTML更新--更新网站地图,可以在 ...

  4. OpenGL中怎么把世界坐标系变成屏幕坐标系

    对这个3D坐标手动进行OpenGL的四个变换,得到的结果就是屏幕上的像素坐标.前三个变换(Model, View, Projection)都是4x4矩阵,操作对象是四维向量,所以需要把(100, 10 ...

  5. Xamarin控件使用之ListView

    listview单列多行的显示,以后再加多列多行的实例. [Activity(Label = "GraphicAll", LaunchMode = LaunchMode.Singl ...

  6. JAVA_SE基础——26.[深入解析]局部变量与成员变量的区别

    黑马程序员入学blog ... 如果这章节很难懂的话应该返回去先看  JAVA_SE基础--10.变量的作用域 定义的位置上区别: 1. 成员变量是定义在方法之外,类之内的. 2. 局部变量是定义在方 ...

  7. 深入理解java的static关键字

    static关键字是很多朋友在编写代码和阅读代码时碰到的比较难以理解的一个关键字,也是各大公司的面试官喜欢在面试时问到的知识点之一.下面就先讲述一下static关键字的用法和平常容易误解的地方,最后列 ...

  8. LeetCode & Q53-Maximum Subarray-Easy & 动态规划思路分析

    Array DP Divide and Conquer Description: Find the contiguous subarray within an array (containing at ...

  9. centos7.0下的 systemctl 用法

    参考链接: http://man.linuxde.net/systemctl

  10. GIT入门笔记(3)- git中的一些概念和原理

    一.git管理过程中所处的4个阶段: 工作目录(workspace) 暂存区(index) 本地仓库(local repository) 远程仓库(remote repository) 二.工作目录+ ...