Time Limit: 20 Sec  Memory Limit: 400 MB

Description

  给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v),你需要回答u xor lastans和v这两个节点间有多少种不同的点权。其中lastans是上一个询问的答案,初始为0,即第一个询问的u是明文。

Input

  第一行两个整数N,M。
  第二行有N个整数,其中第i个整数表示点i的权值。
  后面N-1行每行两个整数(x,y),表示点x到点y有一条边。
  最后M行每行两个整数(u,v),表示一组询问。
  数据范围是N<=40000 M<=100000 点权在int范围内 

Output

  M行,表示每个询问的答案。

Sample Input

  8 2
  105 2 9 3 8 5 7 7
  1 2
  1 3
  1 4
  3 5
  3 6
  3 7
  4 8
  2 5
  3 8

Sample Output

  4
  4

Solution

  在线莫队(TLE):把树分成k块,每块选出一个点作为代表点,预处理出所有块的代表点到其他代表点路径上颜色种数和各种颜色的数量,每次询问找到两个询问点所在块,根据预处理出的信息可以在$O(\frac{n}{k})$时间内算出答案,复杂度$O(nk^{2}+\frac{qn}{k})$,适当调整k,总复杂度约为$O(n^{\frac{5}{3}})$,理论上很科学可是这题卡常……
  正解树分块+可持久化块状数组:把树分成k块,每块选出一个点作为代表点,预处理出各块代表点到其他所有点路径上的颜色种数,对于每个询问x,y,我们令所在块的代表点深度较大的为x,代表点为u,则我们利用预处理的信息可以知道u到y的路径上的答案,接下来我们把x到u的路径并入答案中,只要能支持$O(1)$询问一种颜色是否在u到y的路径上出现过即可$O(\frac{n}{k})$完成,我们预处理出每个点到根路径上各种颜色出现的最大深度,那么如果u到根和y到根出现一种颜色的最大深度大等于lca(u,y)的深度,那么这种颜色就在u到y的路径上出现过,暴力计算是$O(n^{2})$的,用可持久化块状数组我们就能实现$O(\sqrt{n})$从一个点的父亲那里复制数组,$O(\sqrt{n})$时间内修改一个元素,$O(1)$查询一个值,总复杂度约为$O(n\sqrt{n})$。

Code

在线莫队(TLE)

#include<cstdio>
#include<algorithm>
#include<map>
using namespace std;
inline int read()
{
int x,f=;char c;
while((c=getchar())<''||c>'')if(c=='-')f=;
for(x=c-'';(c=getchar())>=''&&c<='';)x=x*+c-'';
return f?x:-x;
}
#define MN 40000
#define K 713
#define LG 15
#define KS (MN/K)
map<int,int> mp;
struct edge{int nx,t;}e[MN*+];
int h[MN+],en,c[MN+],cnt,fa[LG+][MN+],d[MN+],s[MN+],ht[MN+],q[MN+],qr,b[MN+],p[KS+];
unsigned short ans[KS+][KS+],f[KS+][KS+][MN+];
bool u[KS+][KS+][MN+];
inline void ins(int x,int y)
{
e[++en]=(edge){h[x],y};h[x]=en;
e[++en]=(edge){h[y],x};h[y]=en;
}
void pre(int x)
{
for(int i=h[x];i;i=e[i].nx)if(e[i].t!=fa[][x])
{
fa[][e[i].t]=x;d[e[i].t]=d[x]+;
pre(e[i].t);
s[x]+=s[e[i].t];ht[x]=max(ht[x],ht[e[i].t]+);
}
if(++s[q[++qr]=x],(ht[x]=max(ht[x],))==K||x<)
{for(p[++cnt]=x;s[x]--;)b[q[qr--]]=cnt;ht[x]=s[x]=;}
}
inline void cal(int a,int b,int x)
{
(u[a][b][x]^=)?f[a][b][c[x]]++?:++ans[a][b]:
--f[a][b][c[x]]?:--ans[a][b];
}
int lca(int x,int y)
{
int dx=d[x]-d[y],i;
if(dx<)swap(x,y),dx=-dx;
for(i=;dx;++i,dx>>=)if(dx&)x=fa[i][x];
if(x==y)return x;
for(i=LG;i>=;--i)if(fa[i][x]!=fa[i][y])x=fa[i][x],y=fa[i][y];
return fa[][x];
}
int main()
{
int n,m,i,j,x,y,l=,lx=,ly=;
n=read();m=read();
for(i=;i<=n;++i)mp[c[i]=read()]?:mp[c[i]]=++cnt;
for(i=;i<=n;++i)c[i]=mp[c[i]];
for(i=;i<n;++i)ins(read(),read());
cnt=;pre();
for(i=;i<=LG;++i)for(j=;j<=n;++j)fa[i][j]=fa[i-][fa[i-][j]];
for(i=;i<=cnt;++i)for(j=;j<=cnt;++j)
for(x=p[i],y=p[j];x!=y;)
if(d[x]>d[y])cal(i,j,x),x=fa[][x];
else cal(i,j,y),y=fa[][y];
while(m--)
{
i=b[x=read()^l];j=b[y=read()];
if(x==lx&&y==ly){printf("%d\n",l);continue;}
cal(i,j,q[qr=]=lca(lx=x,ly=y));
while(x!=p[i])cal(i,j,q[++qr]=x),x=fa[][x];
while(y!=p[j])cal(i,j,q[++qr]=y),y=fa[][y];
printf("%d\n",l=ans[i][j]);
for(x=;x<=qr;++x)cal(i,j,q[x]);
}
}
正解

#include<cstdio>
#include<algorithm>
#include<map>
using namespace std;
inline int read()
{
int x,f=;char c;
while((c=getchar())<''||c>'')if(c=='-')f=;
for(x=c-'';(c=getchar())>=''&&c<='';)x=x*+c-'';
return f?x:-x;
}
#define MN 40000
#define K 200
#define LG 15
map<int,int> mp;
struct edge{int nx,t;}e[MN*+];
int h[MN+],en,c[MN+],cnt,fa[LG+][MN+],d[MN+],s[MN+],ht[MN+],q[MN+],qn;
int b[MN+],p[K+],u[MN+],ans[K+][MN+],a[MN+][K],v[MN+][K],vn;
inline void ins(int x,int y)
{
e[++en]=(edge){h[x],y};h[x]=en;
e[++en]=(edge){h[y],x};h[y]=en;
}
void pre(int x)
{
for(int i=h[x];i;i=e[i].nx)if(e[i].t!=fa[][x])
{
fa[][e[i].t]=x;d[e[i].t]=d[x]+;
pre(e[i].t);
s[x]+=s[e[i].t];ht[x]=max(ht[x],ht[e[i].t]+);
}
if(++s[q[++qn]=x],(ht[x]=max(ht[x],))==K||x<)
{for(p[++cnt]=x;s[x]--;)b[q[qn--]]=cnt;ht[x]=s[x]=;}
}
void dfs(int k,int x,int f)
{
if(!u[c[x]]++)++ans[k][x];
if(!f)ans[k][fa[][x]]=ans[k][x],dfs(k,fa[][x],x);
else for(int i=h[x];i;i=e[i].nx)if(e[i].t!=f)
ans[k][e[i].t]=ans[k][x],dfs(k,e[i].t,x);
--u[c[x]];
}
void build(int x)
{
int i,j=c[x]/K,k=c[x]%K;
for(i=;i<K;++i)a[x][i]=a[fa[][x]][i];
for(++vn,i=;i<K;++i)v[vn][i]=v[a[x][j]][i];
v[a[x][j]=vn][k]=d[x];
for(i=h[x];i;i=e[i].nx)if(e[i].t!=fa[][x])build(e[i].t);
}
int lca(int x,int y)
{
int dx=d[x]-d[y],i;
if(dx<)swap(x,y),dx=-dx;
for(i=;dx;++i,dx>>=)if(dx&)x=fa[i][x];
if(x==y)return x;
for(i=LG;i>=;--i)if(fa[i][x]!=fa[i][y])x=fa[i][x],y=fa[i][y];
return fa[][x];
}
int vio(int x,int y)
{
int res=;
for(qn=;x!=y;)
d[x]>d[y]?(u[q[++qn]=c[x]]++?:++res,x=fa[][x]):
(u[q[++qn]=c[y]]++?:++res,y=fa[][y]);
u[q[++qn]=c[x]]++?:++res;
while(qn)u[q[qn--]]=;
return res;
}
int main()
{
int n,m,i,j,x,y,l=;
n=read();m=read();
for(i=;i<=n;++i)mp[c[i]=read()]?:mp[c[i]]=++cnt;
for(i=;i<=n;++i)c[i]=mp[c[i]]-;
for(i=;i<n;++i)ins(read(),read());
cnt=;pre(d[]=);
for(i=;i<=LG;++i)for(j=;j<=n;++j)fa[i][j]=fa[i-][fa[i-][j]];
for(i=;i<=cnt;++i)dfs(i,p[i],);
build();
while(m--)
{
x=read()^l;y=read();
if(b[x]==b[y])l=vio(x,y);
else
{
if(d[p[b[x]]]<d[p[b[y]]])swap(x,y);
l=ans[b[x]][y];j=d[lca(x,y)];
for(i=x;i!=p[b[x]];i=fa[][i])if(!u[c[i]]++)
if(max(v[a[p[b[x]]][c[i]/K]][c[i]%K],v[a[y][c[i]/K]][c[i]%K])<j)++l;
for(i=x;i!=p[b[x]];i=fa[][i])u[c[i]]=;
}
printf("%d\n",l);
}
}

[BZOJ]2589: Spoj 10707 Count on a tree II的更多相关文章

  1. 【BZOJ2589】 Spoj 10707 Count on a tree II

    BZOJ2589 Spoj 10707 Count on a tree II Solution 吐槽:这道题目简直...丧心病狂 如果没有强制在线不就是树上莫队入门题? 如果加了强制在线怎么做? 考虑 ...

  2. BZOJ2539 Spoj 10707 Count on a tree II

    题面 题解 因为这道题目我也不太会做,所以借鉴了一下大佬heyujun的博客 如果不强制在线,这道题目是树上莫队练手题 我们知道莫队是离线的,但是万一强制在线就凉凉了 于是我们就需要一些操作:树分块 ...

  3. bzoj2589: Spoj 10707 Count on a tree II

    Description 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v),你需要回答u xor lastans和v这两个节点间有多少种不同的点权.其中lastans是上一个询问的答案,初 ...

  4. 【SPOJ】Count On A Tree II(树上莫队)

    [SPOJ]Count On A Tree II(树上莫队) 题面 洛谷 Vjudge 洛谷上有翻译啦 题解 如果不在树上就是一个很裸很裸的莫队 现在在树上,就是一个很裸很裸的树上莫队啦. #incl ...

  5. BZOJ 2588: Spoj 10628. Count on a tree [树上主席树]

    2588: Spoj 10628. Count on a tree Time Limit: 12 Sec  Memory Limit: 128 MBSubmit: 5217  Solved: 1233 ...

  6. BZOJ 2588: Spoj 10628. Count on a tree 树上跑主席树

    2588: Spoj 10628. Count on a tree Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/J ...

  7. Bzoj 2588: Spoj 10628. Count on a tree 主席树,离散化,可持久,倍增LCA

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2588 2588: Spoj 10628. Count on a tree Time Limit ...

  8. BZOJ 2588: Spoj 10628. Count on a tree( LCA + 主席树 )

    Orz..跑得还挺快的#10 自从会树链剖分后LCA就没写过倍增了... 这道题用可持久化线段树..点x的线段树表示ROOT到x的这条路径上的权值线段树 ----------------------- ...

  9. bzoj 2588 Spoj 10628. Count on a tree (可持久化线段树)

    Spoj 10628. Count on a tree Time Limit: 12 Sec  Memory Limit: 128 MBSubmit: 7669  Solved: 1894[Submi ...

随机推荐

  1. bug终结者 团队作业第六、七周

    bug终结者 团队作业第六.七周 作业要求:团队作业第六.七周 博客编辑:20162322 朱娅霖 一.修改<需求规格说明书> <需求规格说明书>2.0版(即初稿) <需 ...

  2. from nltk.book import * 出错的解决方法

    import nltknltk.download() 在使用上面命令安装了nltk库并运行下载后,再输入from nltk.book import * 往往会出现这样的错误提示: 出现这种错误往往是由 ...

  3. 详谈C++虚函数表那回事(多重继承关系)

    上一篇说了一般继承,也就是单继承的虚函数表,接下来说说多重继承的虚函数表: 1.无虚函数覆盖的多重继承: 代码: #pragma once //无覆盖,多重继承 class Base1 { publi ...

  4. verilog学习笔记(4)_有限状态机

    有限状态机: 有限状态机是由寄存器组和组合逻辑构成的硬件时序电路: - 其状态(即由寄存器组的1和0的组合状态所构成的有限个状态)只能在同一时钟跳变沿的情况下才能从一个状态转向另一个状态: - 究竟转 ...

  5. 【iOS】swift 枚举

    枚举语法 你可以用enum开始并且用大括号包含整个定义体来定义一个枚举: enum SomeEnumeration { // 在这里定义枚举 } 这里有一个例子,定义了一个包含四个方向的罗盘: enu ...

  6. Spring Boot jar包linux服务器部署

    Spring Boot 部署 一.使用命令行java -jar 常驻 nohup java -jar spring-boot-1.0-SNAPSHOT.jar > log.file 2>& ...

  7. AWK读书笔记

    1.awk 'parttern {action}' filename 从文件中逐行读取并匹配parttern,若匹配成功执行action否则读取下一行. parttern和action都可选,若省略p ...

  8. linux下执行java类(运行java定时器)

    假如有一个定时器TimerTest.java import java.io.IOException; import java.util.Timer; public class TimerTest { ...

  9. Spring知识点回顾(05)bean的初始化和销毁

    Java配置方式:@Bean @InitMethod @destroyMethod xml配置方式:init-method,destroy-method 注解方式:@PostConstruct,@Pr ...

  10. 数据库“行专列”操作---使用row_number()over(partition by 分组字段 [order by 排序字段])

    测试样例: create table test(rsrp string,rsrq string,tkey string,distan string); '); '); '); '); select * ...