UVA 5009 Error Curves
pays much attention to a method called Linear Discriminant Analysis, which
has many interesting properties.
In order to test the algorithm's efficiency, she collects many datasets.
What's more, each data is divided into two parts: training data and test
data. She gets the parameters of the model on training data and test the
model on test data. To her surprise, she finds each dataset's test error
curve is just a parabolic curve. A parabolic curve corresponds to a
quadratic function. In mathematics, a quadratic function is a polynomial
function of the form f(x) = ax2 + bx + c. The
quadratic will degrade to linear function if a = 0.
It's very easy to calculate the minimal error if there is only one test
error curve. However, there are several datasets, which means Josephina
will obtain many parabolic curves. Josephina wants to get the tuned
parameters that make the best performance on
all datasets. So she should take all error curves into account, i.e.,
she has to deal with many quadric functions and make a new error
definition to represent the total error. Now, she focuses on the
following new function's minimum which related to multiple
quadric functions. The new function F(x) is defined as follows: F(x) =
max(Si(x)), i = 1...n. The domain of x is [0, 1000]. Si(x) is a quadric
function. Josephina wonders the minimum of F(x). Unfortunately, it's too
hard for her to solve this problem. As a
super programmer, can you help her?
cases T (T < 100). Each case begins with a number n (n ≤ 10000).
Following n lines, each line contains three integers a (0 ≤ a ≤ 100), b
(|b| ≤ 5000), c (|c| ≤ 5000), which mean the corresponding
coefficients of a quadratic function.
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
double eps=1e-;
double a[],b[],c[];
int n;
double cal(double x)
{int i;
double tmp=a[]*x*x+b[]*x+c[];
for (i=;i<=n;i++)
{
tmp=max(tmp,a[i]*x*x+b[i]*x+c[i]);
}
return tmp;
}
int main()
{int T,i;
cin>>T;
while (T--)
{
cin>>n;
for (i=;i<=n;i++)
{
scanf("%lf%lf%lf",&a[i],&b[i],&c[i]);
}
int t=;
double l=,r=,ans=;
while (t--)
{
double mid1=l+(r-l)/3.0,mid2=r-(r-l)/3.0;
if (cal(mid1)<cal(mid2)) r=mid2;
else l=mid1;
}
printf("%.4lf\n",cal(l));
}
}
UVA 5009 Error Curves的更多相关文章
- UVA 1476 - Error Curves(三分法)
UVA 1476 1476 - Error Curves 题目链接 题意:给几条下凹二次函数曲线.然后问[0,1000]全部位置中,每一个位置的值为曲线中最大值的值,问全部位置的最小值是多少 思路:三 ...
- 【单峰函数,三分搜索算法(Ternary_Search)】UVa 1476 - Error Curves
Josephina is a clever girl and addicted to Machine Learning recently. She pays much attention to a m ...
- UVA - 1476 Error Curves 三分
Error Curves Josephina is a clever girl and addicted to Machi ...
- UVALive 5009 Error Curves 三分
//#pragma comment(linker, "/STACK:1024000000,1024000000") #include<cstdio> #include& ...
- uva 1476 - Error Curves
对x的坐标三分: #include<cstdio> #include<algorithm> #define maxn 10009 using namespace std; do ...
- LA 5009 (HDU 3714) Error Curves (三分)
Error Curves Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & %llu SubmitStatusPr ...
- Error Curves(2010成都现场赛题)
F - Error Curves Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & %llu Descript ...
- Error Curves HDU - 3714
Josephina is a clever girl and addicted to Machine Learning recently. She pays much attention to a m ...
- hdu 3714 Error Curves(三分)
Error Curves Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Tot ...
随机推荐
- 20162330 第三周 蓝墨云班课 泛型类-Bag 练习
目录 题目及要求 思路分析 遇到的问题和解决过程 代码实现及托管链接 感想 参考资料 题目及要求 代码运行在命令行中,路径要体现学号信息,IDEA中,伪代码要体现个人学号信息: 参见Bag的UML图, ...
- 201621123050 《Java程序设计》第10周学习总结
1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结异常相关内容. 2. 书面作业 本次PTA作业题集异常 1. 常用异常 结合题集题目7-1回答 1.1 自己以前编写的代码中经常出现 ...
- PTA題目的處理(一)
**題目1:A乘B** **實驗代碼** #include <stdio.h> #include <stdlib.h> int main() { signed int a,b; ...
- HASH方法课下补分博客
课堂要求:利用除留余数法为下列关键字集合的存储设计hash函数,并画出分别用开放寻址法和拉链法解决冲突得到的空间存储状态(散列因子取0.75)关键字集合:85,75,57,60,65,(你的8位学号相 ...
- 团队作业4——第一次项目冲刺(Alpha版本)2017.11.14
第一次会议:2017-11-14 额--这几天比较忙,忘记上传了,今天补上 先上个图,O(∩_∩)O哈哈: 会议主要内容: 1. 讨论整体框架 2. 个人具体分工 3. 代码统一 具体分工: 成员 计 ...
- css变化代码
<!DOCTYPE html><html> <head> <meta charset="UTF-8"> ...
- JAVA_SE基础——17.方法的重载
方法重载: 方法重载就是方法名称重复,加载参数不同. 具体规范: 一.方法名一定要相同. 二.方法的参数表必须不同,包括参数的类型或个数,以此区分不同的方法体. 1.如果参数个数不同,就不管它的参数类 ...
- Python内置函数(52)——getattr
英文文档: getattr(object, name[, default]) Return the value of the named attribute of object. name must ...
- SpringCloud的微服务网关:zuul(理论)
参考链接:https://springcloud.cc/spring-cloud-dalston.html 一.概念与定义 1.为什么要引入API网关 后期维护:路由规则和服务实例列表困难 系统架构: ...
- Spring Security入门(3-4)Spring Security 异常处理、异常传递和异常获取