题目描述

你有n个砝码,均为1克,2克或者3克。你并不清楚每个砝码的重量,但你知道其中一些砝码重量的大小关系。你把其中两个砝码A 和B 放在天平的左边,需要另外选出两个砝码放在天平的右边。问:有多少种选法使得天平的左边重(c1)、一样重(c2)、右边重(c3)?(只有结果保证惟一 的选法才统计在内)

输入输出格式

输入格式:

第一行包含三个正整数n,A,B(1<=A,B<=N,A 和B 不相等)。砝码编号

为1~N。以下n行包含重量关系矩阵,其中第i行第j个字符为加号“+”表示砝

码i比砝码j重,减号“-”表示砝码i比砝码j 轻,等号“=”表示砝码i和砝码

j一样重,问号“?”表示二者的关系未知。存在一种情况符合该矩阵。

输出格式:

仅一行,包含三个整数,即c1,c2和c3。

输入输出样例

输入样例#1:
复制

6 2 5
?+????
-?+???
?-????
????+?
???-?+
????-?
输出样例#1: 复制

1 4 1
输入样例#2: 复制

14 8 4
?+???++?????++
-??=?=???????=
??????????=???
?=??+?==??????
???-???-???-??
-=????????????
-??=???=?-+???
???=+?=???????
??????????????
??????+???????
??=???-????-??
????+?????+???
-?????????????
-=????????????
输出样例#2: 复制

18 12 11

说明

4<=n<=50

A+B>C+D <=> A-C>D-B 由此我们可以使用差分约束

用数组Max[i][j],Min[i][j]分别表示 i-j 的最大值和最小值,使用Floyd

对这个数组用Floyd,就可以求出最终两点间的大小关系

Max[i][j]=min(Max[i][j],Max[i][k]+Max[k][j])

Min[i][j]=max(Min[i][j],Min[i][k]+Min[k][j])

拿Max来说明:比如i-j<=2,i-k<=1,k-j<=0

那么显然i-j条件就变成i-j<=1

于是判断就可以枚举两个砝码

如果Min[s1][i]>Max[j][s2]那么显然大小关系是确定的

就有s1-i>j-s2   =>   s1+s2>i+j  于是c1可以+1

c2和c3同理

zyys(贼有意思)

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int Max[][],Min[][];
char s[];
int n,s1,s2,c1,c2,c3;
int main()
{int i,j,k,l;
cin>>n>>s1>>s2;
for (i=;i<=n;i++)
{
scanf("%s",s);
l=strlen(s);
for (j=;j<l;j++)
{
if (s[j]=='='||i==j+)
Max[i][j+]=,Min[i][j+]=;
else
if (s[j]=='+')
Max[i][j+]=,Min[i][j+]=;
else
if (s[j]=='-')
Max[i][j+]=-,Min[i][j+]=-;
else
if (s[j]=='?')
Max[i][j+]=,Min[i][j+]=-;
}
}
for (k=;k<=n;k++)
for (i=;i<=n;i++)
if (i!=k)
{
for (j=;j<=n;j++)
if (i!=j&&k!=j)
{
Max[i][j]=min(Max[i][j],Max[i][k]+Max[k][j]);
Min[i][j]=max(Min[i][j],Min[i][k]+Min[k][j]);
}
}
for (i=;i<=n;i++)
if (i!=s1&&i!=s2)
{
for (j=;j<i;j++)
if (j!=s1&&j!=s2)
{
if (Min[s1][i]>Max[j][s2]||Min[s1][j]>Max[i][s2])
c1++;
if (Max[s1][i]<Min[j][s2]||Max[s2][i]<Min[j][s1])
c3++;
if ((Max[s1][i]==Min[s1][i]&&Max[j][s2]==Min[j][s2]&&Max[s1][i]==Max[j][s2])||(Max[s1][j]==Min[s1][j]&&Max[i][s2]==Min[i][s2]&&Max[s1][j]==Max[i][s2])) c2++;
}
}
cout<<c1<<' '<<c2<<' '<<c3;
}

[SCOI2008]天平的更多相关文章

  1. 【洛谷】2474:[SCOI2008]天平【差分约束系统】

    P2474 [SCOI2008]天平 题目背景 2008四川NOI省选 题目描述 你有n个砝码,均为1克,2克或者3克.你并不清楚每个砝码的重量,但你知道其中一些砝码重量的大小关系.你把其中两个砝码A ...

  2. 洛谷P2474 [SCOI2008]天平

    P2474 [SCOI2008]天平 题目背景 2008四川NOI省选 题目描述 你有n个砝码,均为1克,2克或者3克.你并不清楚每个砝码的重量,但你知道其中一些砝码重量的大小关系.你把其中两个砝码A ...

  3. 洛谷2474 [SCOI2008] 天平 差分约束->枚举

    题目描述 你有n个砝码,均为1克,2克或者3克.你并不清楚每个砝码的重量,但你知道其中一些砝码重量的大小关系.你把其中两个砝码A 和B 放在天平的左边,需要另外选出两个砝码放在天平的右边.问:有多少种 ...

  4. BZOJ1077 : [SCOI2008]天平

    首先通过差分约束系统建图,用Floyed算法求出任意两个砝码差值的上下界. 然后暴力枚举放在右边的砝码C,D,通过与A,B差值的上下界分类讨论统计方案. 时间复杂度$O(N^3)$. #include ...

  5. [SCOI2008]天平 差分约束

    ---题面--- 题解: 差分约束学得实在是太烂了,,,,QAQ 这里先记下: a - b >= x  ---> a >= b + x     ---->        b - ...

  6. [luogu2474 SCOI2008]天平(floyd差分约束)

    传送门 Solution 由于重量只有三种情况,那么想到用差分约束. 由于范围比较小,想到可以floyed求差分约束,暴力求天平另一边 Code #include <cstdio> #in ...

  7. 2021.07.23 P2474 天平(差分约束)

    2021.07.23 P2474 天平(差分约束) [P2474 SCOI2008]天平 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 题意: 已知A,B和每两个点点权,求点权i, ...

  8. Noip前的大抱佛脚----赛前任务

    赛前任务 tags:任务清单 前言 现在xzy太弱了,而且他最近越来越弱了,天天被爆踩,天天被爆踩 题单不会在作业部落发布,所以可(yi)能(ding)会不及时更新 省选前的练习莫名其妙地成为了Noi ...

  9. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

随机推荐

  1. 记录python接口自动化测试--利用unittest生成测试报告(第四目)

    前面介绍了是用unittest管理测试用例,这次看看如何生成html格式的测试报告 生成html格式的测试报告需要用到 HTMLTestRunner,在网上下载了一个HTMLTestRunner.py ...

  2. 启动django应用报错 “Error: [WinError 10013] 以一种访问权限不允许的方式做了一个访问套接字的尝试。”

    启动django应用时报如下错误 "Error: [WinError 10013] 以一种访问权限不允许的方式做了一个访问套接字的尝试." 网上查了一下,是8000端口被其他程序占 ...

  3. 201621123031 《Java程序设计》第10周学习总结

    作业10-异常 1.本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结异常相关内容. 1.捕捉异常 Java中的异常捕获结构由try.catch和finally三个部分组成.其中try语句 ...

  4. Scala Option类型

    转载自: Scala 初学者指南, 这里有一系列很棒的文章 类型 Option 可能你已经见过它在 Map API 中的使用:在实现自己的提取器时,我们也用过它, 然而,它还需要更多的解释. 你可能会 ...

  5. ASP.NET MVC中错误处理方式

    /// <summary> /// 标记了HandleError,并指明错误处理页为AboutError.aspx /// </summary> /// <returns ...

  6. Win10安装Ubuntu14.04.5双系统(显示器为DP接口)

    系统安装主要参考了这篇博文Win10+Ubuntu17.04双系统安装,不再重复. 重点说说DP接口的事,如果主机有VGA接口的话可以到此为止了,如果只有DP接口的话可以参考以下内容. 一.Ubunt ...

  7. dubbo的InvocationChain

    个人觉得dubbo比较好的设计是:一个是Cooma微容器设计.另一个就是InvocationChain了 Cooma微容器是自己实现了一套SPI,方便了用户做扩展: InvocationChain类似 ...

  8. Django之中间件

    中间件简介 什么是中间件 中间件是一个用来处理Django的请求和响应的框架级别的钩子.它是一个轻量.低级别的插件系统,用于在全局范围内改变Django的输入和输出.每个中间件组件都负责做一些特定的功 ...

  9. BBS的登陆——发帖——回帖

    整体分析思路 1.首先手工熟悉一遍业务流程 2.录制脚本,选取协议,设置录制选项 1)Run-Time-Settings——Preferences——Options设置3个超时 2)Recording ...

  10. RxJava系列4(过滤操作符)

    RxJava系列1(简介) RxJava系列2(基本概念及使用介绍) RxJava系列3(转换操作符) RxJava系列4(过滤操作符) RxJava系列5(组合操作符) RxJava系列6(从微观角 ...