scrapy-redis是一个基于redis的scrapy组件,通过它可以快速实现简单分布式爬虫程序,该组件本质上提供了三大功能:

  • scheduler - 调度器
  • dupefilter - URL去重规则(被调度器使用)
  • pipeline   - 数据持久化

scrapy-redis组件

1. URL去重

定义去重规则(被调度器调用并应用)

    a. 内部会使用以下配置进行连接Redis

        # REDIS_HOST = 'localhost'                            # 主机名
# REDIS_PORT = 6379 # 端口
# REDIS_URL = 'redis://user:pass@hostname:9001' # 连接URL(优先于以上配置)
# REDIS_PARAMS = {} # Redis连接参数 默认:REDIS_PARAMS = {'socket_timeout': 30,'socket_connect_timeout': 30,'retry_on_timeout': True,'encoding': REDIS_ENCODING,})
# REDIS_PARAMS['redis_cls'] = 'myproject.RedisClient' # 指定连接Redis的Python模块 默认:redis.StrictRedis
# REDIS_ENCODING = "utf-8" # redis编码类型 默认:'utf-8' b. 去重规则通过redis的集合完成,集合的Key为: key = defaults.DUPEFILTER_KEY % {'timestamp': int(time.time())}
默认配置:
DUPEFILTER_KEY = 'dupefilter:%(timestamp)s' c. 去重规则中将url转换成唯一标示,然后在redis中检查是否已经在集合中存在 from scrapy.utils import request
from scrapy.http import Request req = Request(url='http://www.cnblogs.com/wupeiqi.html')
result = request.request_fingerprint(req)
print(result) # 8ea4fd67887449313ccc12e5b6b92510cc53675c PS:
- URL参数位置不同时,计算结果一致;
- 默认请求头不在计算范围,include_headers可以设置指定请求头
示例:
from scrapy.utils import request
from scrapy.http import Request req = Request(url='http://www.baidu.com?name=8&id=1',callback=lambda x:print(x),cookies={'k1':'vvvvv'})
result = request.request_fingerprint(req,include_headers=['cookies',]) print(result) req = Request(url='http://www.baidu.com?id=1&name=8',callback=lambda x:print(x),cookies={'k1':666}) result = request.request_fingerprint(req,include_headers=['cookies',]) print(result) """
# Ensure all spiders share same duplicates filter through redis.
# DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter"

2. 调度器

"""
调度器,调度器使用PriorityQueue(有序集合)、FifoQueue(列表)、LifoQueue(列表)进行保存请求,并且使用RFPDupeFilter对URL去重 a. 调度器
SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.PriorityQueue' # 默认使用优先级队列(默认),其他:PriorityQueue(有序集合),FifoQueue(列表)、LifoQueue(列表)
SCHEDULER_QUEUE_KEY = '%(spider)s:requests' # 调度器中请求存放在redis中的key
SCHEDULER_SERIALIZER = "scrapy_redis.picklecompat" # 对保存到redis中的数据进行序列化,默认使用pickle
SCHEDULER_PERSIST = True # 是否在关闭时候保留原来的调度器和去重记录,True=保留,False=清空
SCHEDULER_FLUSH_ON_START = True # 是否在开始之前清空 调度器和去重记录,True=清空,False=不清空
SCHEDULER_IDLE_BEFORE_CLOSE = 10 # 去调度器中获取数据时,如果为空,最多等待时间(最后没数据,未获取到)。
SCHEDULER_DUPEFILTER_KEY = '%(spider)s:dupefilter' # 去重规则,在redis中保存时对应的key
SCHEDULER_DUPEFILTER_CLASS = 'scrapy_redis.dupefilter.RFPDupeFilter'# 去重规则对应处理的类 """
# Enables scheduling storing requests queue in redis.
SCHEDULER = "scrapy_redis.scheduler.Scheduler" # Default requests serializer is pickle, but it can be changed to any module
# with loads and dumps functions. Note that pickle is not compatible between
# python versions.
# Caveat: In python 3.x, the serializer must return strings keys and support
# bytes as values. Because of this reason the json or msgpack module will not
# work by default. In python 2.x there is no such issue and you can use
# 'json' or 'msgpack' as serializers.
# SCHEDULER_SERIALIZER = "scrapy_redis.picklecompat" # Don't cleanup redis queues, allows to pause/resume crawls.
# SCHEDULER_PERSIST = True # Schedule requests using a priority queue. (default)
# SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.PriorityQueue' # Alternative queues.
# SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.FifoQueue'
# SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.LifoQueue' # Max idle time to prevent the spider from being closed when distributed crawling.
# This only works if queue class is SpiderQueue or SpiderStack,
# and may also block the same time when your spider start at the first time (because the queue is empty).
# SCHEDULER_IDLE_BEFORE_CLOSE = 10  

3. 数据持久化

2. 定义持久化,爬虫yield Item对象时执行RedisPipeline

    a. 将item持久化到redis时,指定key和序列化函数

        REDIS_ITEMS_KEY = '%(spider)s:items'
REDIS_ITEMS_SERIALIZER = 'json.dumps' b. 使用列表保存item数据

4. 起始URL相关

"""
起始URL相关 a. 获取起始URL时,去集合中获取还是去列表中获取?True,集合;False,列表
REDIS_START_URLS_AS_SET = False # 获取起始URL时,如果为True,则使用self.server.spop;如果为False,则使用self.server.lpop
b. 编写爬虫时,起始URL从redis的Key中获取
REDIS_START_URLS_KEY = '%(name)s:start_urls' """
# If True, it uses redis' ``spop`` operation. This could be useful if you
# want to avoid duplicates in your start urls list. In this cases, urls must
# be added via ``sadd`` command or you will get a type error from redis.
# REDIS_START_URLS_AS_SET = False # Default start urls key for RedisSpider and RedisCrawlSpider.
# REDIS_START_URLS_KEY = '%(name)s:start_urls'

scrapy-redis示例

# DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter"
#
#
# from scrapy_redis.scheduler import Scheduler
# from scrapy_redis.queue import PriorityQueue
# SCHEDULER = "scrapy_redis.scheduler.Scheduler"
# SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.PriorityQueue' # 默认使用优先级队列(默认),其他:PriorityQueue(有序集合),FifoQueue(列表)、LifoQueue(列表)
# SCHEDULER_QUEUE_KEY = '%(spider)s:requests' # 调度器中请求存放在redis中的key
# SCHEDULER_SERIALIZER = "scrapy_redis.picklecompat" # 对保存到redis中的数据进行序列化,默认使用pickle
# SCHEDULER_PERSIST = True # 是否在关闭时候保留原来的调度器和去重记录,True=保留,False=清空
# SCHEDULER_FLUSH_ON_START = False # 是否在开始之前清空 调度器和去重记录,True=清空,False=不清空
# SCHEDULER_IDLE_BEFORE_CLOSE = # 去调度器中获取数据时,如果为空,最多等待时间(最后没数据,未获取到)。
# SCHEDULER_DUPEFILTER_KEY = '%(spider)s:dupefilter' # 去重规则,在redis中保存时对应的key
# SCHEDULER_DUPEFILTER_CLASS = 'scrapy_redis.dupefilter.RFPDupeFilter'# 去重规则对应处理的类
#
#
#
# REDIS_HOST = '10.211.55.13' # 主机名
# REDIS_PORT = # 端口
# # REDIS_URL = 'redis://user:pass@hostname:9001' # 连接URL(优先于以上配置)
# # REDIS_PARAMS = {} # Redis连接参数 默认:REDIS_PARAMS = {'socket_timeout': ,'socket_connect_timeout': ,'retry_on_timeout': True,'encoding': REDIS_ENCODING,})
# # REDIS_PARAMS['redis_cls'] = 'myproject.RedisClient' # 指定连接Redis的Python模块 默认:redis.StrictRedis
# REDIS_ENCODING = "utf-8" # redis编码类型 默认:'utf-8'

配置文件

import scrapy

class ChoutiSpider(scrapy.Spider):
name = "chouti"
allowed_domains = ["chouti.com"]
start_urls = (
'http://www.chouti.com/',
) def parse(self, response):
for i in range(,):
yield

爬虫文件

scrapy-redis使用以及剖析的更多相关文章

  1. Redis源码剖析

    Redis源码剖析和注释(一)---链表结构 Redis源码剖析和注释(二)--- 简单动态字符串 Redis源码剖析和注释(三)--- Redis 字典结构 Redis源码剖析和注释(四)--- 跳 ...

  2. 基于Python,scrapy,redis的分布式爬虫实现框架

    原文  http://www.xgezhang.com/python_scrapy_redis_crawler.html 爬虫技术,无论是在学术领域,还是在工程领域,都扮演者非常重要的角色.相比于其他 ...

  3. Redis源码剖析--源码结构解析

    请持续关注我的个人博客:https://zcheng.ren 找工作那会儿,看了黄建宏老师的<Redis设计与实现>,对redis的部分实现有了一个简明的认识.在面试过程中,redis确实 ...

  4. Redis源码剖析和注释(七)--- 快速列表(quicklist)

    Redis 快速列表(quicklist)1. 介绍quicklist结构是在redis 3.2版本中新加的数据结构,用在列表的底层实现. 通过列表键查看一下:redis 列表键命令详解 127.0. ...

  5. Scrapy爬虫及案例剖析

    由于互联网的极速发展,所有现在的信息处于大量堆积的状态,我们既要向外界获取大量数据,又要在大量数据中过滤无用的数据.针对我们有益的数据需要我们进行指定抓取,从而出现了现在的爬虫技术,通过爬虫技术我们可 ...

  6. Scrapy+redis实现分布式爬虫

    概述 什么是分布式爬虫 需要搭建一个由n台电脑组成的机群,然后在每一台电脑中执行同一组程序,让其对同一网络资源进行联合且分布的数据爬取. 原生Scrapy无法实现分布式的原因 原生Scrapy中调度器 ...

  7. Redis分布式缓存剖析及大厂面试精髓v6.2.6

    概述 官方说明 Redis官网 https://redis.io/ 最新版本6.2.6 Redis中文官网 http://www.redis.cn/ 不过中文官网的同步更新维护相对要滞后不少时间,但对 ...

  8. Redis主从复制深入剖析

    Redis是一个开源的,遵守BSD许可协议的key/value缓存系统,并由其高效的响应速度以及丰富的数据结构而闻名.Redis在京东的使用也是非常普遍的,包括很多关键业务上的 使用,由于Redis官 ...

  9. scrapy+redis去重实现增量抓取

    class ProjectnameDownloaderMiddleware(object): # Not all methods need to be defined. If a method is ...

  10. Redis源码剖析--列表t_list实现

    Redis中的列表对象比较特殊,在版本3.2之前,列表底层的编码是 ziplist 和 linkedlist 实现的, 但是在版本3.2之后,重新引入了一个 quicklist 的数据结构,列表的底层 ...

随机推荐

  1. sklearn包中有哪些数据集你都知道吗?

    注册了博客园一晃有3个月了,同时接触机器学习也断断续续的算是有1个月了.今天就用机器学习神器sklearn包的相关内容作为我的开篇文章吧. 本文将对sklearn包中的数据集做一个系统介绍,并简单说一 ...

  2. 13.HashMap TreeMap HashTable LinkedHashMap 的区别

    数据库基本连接equals和hashCode详解 http://www.cnblogs.com/XMMDMW/p/6502355.html

  3. Asp.Net Core 2.0 项目实战(9) 日志记录,基于Nlog或Microsoft.Extensions.Logging的实现及调用实例

    本文目录 1. Net下日志记录 2. NLog的使用     2.1 添加nuget引用NLog.Web.AspNetCore     2.2 配置文件设置     2.3 依赖配置及调用     ...

  4. 在react中引入下拉刷新和上拉加载

    1. 首先引入插件 import ReactPullLoad, {STATS} from 'react-pullload' 2. 初始化: constructor(props) { super(pro ...

  5. Sublime Text、webstorm等编译器快速编写HTML/CSS代码的技巧

    Sublime Text.webstorm等编译器,如果你从事Web前端开发的话,对这几款软件一定不会陌生.它使用仿CSS选择器的语法来生成代码,大大提高了HTML/CSS代码编写的速度,比如下面的演 ...

  6. 后台返回null iOS

    1.第一种解决方案 就是在每一个 可能传回null 的地方 使用  if([object isEqual:[NSNUll null]]) 去判断 2.第二种解决方案 网上传说老外写了一个Categor ...

  7. Alpha冲刺No.9

    一.站立式会议 继续解决真实手机中的问题,如果不能解决,请教助教学姐 数据库备忘录的获取和上传 细化界面设计 二.项目实际进展 用一种奇怪的方式解决了真实手机中的问题,在总结里细说. 完成数据库备忘录 ...

  8. 项目Alpha冲刺Day3

    一.会议照片 二.项目进展 1.今日安排 服务器后台基本搭建完成,完成帐号权限一小部分完成并进行框架使用练手. 2.问题困难 跨专业成员不熟java的开发,有一名成员之前主要做安卓的,所以有比较多的东 ...

  9. Alpha冲刺Day9

    Alpha冲刺Day9 一:站立式会议 今日安排: 经过为期5天的冲刺,基本完成企业人员模块的开发.因第三方机构与企业存在委托的关系.第三方人员对于风险的自查.风险列表的展示以及自查风险的统计展示(包 ...

  10. 2017-2018-1 1623 bug终结者 冲刺006

    bug终结者 冲刺006 by 20162328 蔡文琛 今日任务:音频素材添加 又是新的一天,小组项目有了很大的起色,已经可以在手机上试玩了. 添加背景音乐能使我们的游戏锦上添花. 音频资源需求 需 ...