多数字段编辑

全文搜索被称作是 召回率(Recall) 与 精确率(Precision) 的战场: 召回率 ——返回所有的相关文档;精确率 ——不返回无关文档。目的是在结果的第一页中为用户呈现最为相关的文档。

为了提高召回率的效果,我们扩大搜索范围 ——不仅返回与用户搜索词精确匹配的文档,还会返回我们认为与查询相关的所有文档。如果一个用户搜索 “quick brown box” ,一个包含词语 fast foxes 的文档被认为是非常合理的返回结果。

如果包含词语 fast foxes 的文档是能找到的唯一相关文档,那么它会出现在结果列表的最上面,但是,如果有 100 个文档都出现了词语 quick brown fox ,那么这个包含词语 fast foxes 的文档当然会被认为是次相关的,它可能处于返回结果列表更下面的某个地方。当包含了很多潜在匹配之后,我们需要将最匹配的几个置于结果列表的顶部。

提高全文相关性精度的常用方式是为同一文本建立多种方式的索引, 每种方式都提供了一个不同的相关度信号 signal 。主字段会以尽可能多的形式的去匹配尽可能多的文档。举个例子,我们可以进行以下操作:

  • 使用词干提取来索引 jumps 、 jumping 和 jumped 样的词,将 jump 作为它们的词根形式。这样即使用户搜索 jumped ,也还是能找到包含 jumping 的匹配的文档。
  • 将同义词包括其中,如 jump 、 leap 和 hop 。
  • 移除变音或口音词:如 ésta 、 está 和 esta 都会以无变音形式 esta 来索引。

尽管如此,如果我们有两个文档,其中一个包含词 jumped ,另一个包含词 jumping ,用户很可能期望前者能排的更高,因为它正好与输入的搜索条件一致。

为了达到目的,我们可以将相同的文本索引到其他字段从而提供更为精确的匹配。一个字段可能是为词干未提取过的版本,另一个字段可能是变音过的原始词,第三个可能使用 shingles 提供 词语相似性 信息。这些附加的字段可以看成提高每个文档的相关度评分的信号 signals ,能匹配字段的越多越好。

一个文档如果与广度匹配的主字段相匹配,那么它会出现在结果列表中。如果文档同时又与 signal 信号字段匹配,那么它会获得额外加分,系统会提升它在结果列表中的位置。

我们会在本书稍后对同义词、词相似性、部分匹配以及其他潜在的信号进行讨论,但这里只使用词干已提取(stemmed)和未提取(unstemmed)的字段作为简单例子来说明这种技术。

多字段映射编辑

首先要做的事情就是对我们的字段索引两次: 一次使用词干模式以及一次非词干模式。为了做到这点,采用 multifields 来实现,已经在 multifields 有所介绍:

DELETE /my_index

PUT /my_index
{
"settings": { "number_of_shards": 1 },

    "mappings": {
"my_type": {
"properties": {
"title": {

                    "type":     "string",
"analyzer": "english",
"fields": {
"std": {

                            "type":     "string",
"analyzer": "standard"
}
}
}
}
}
}
}

参考 被破坏的相关度.

title 字段使用 english 英语分析器来提取词干。

title.std 字段使用 standard 标准分析器,所以没有词干提取。

接着索引一些文档:

PUT /my_index/my_type/1
{ "title": "My rabbit jumps" } PUT /my_index/my_type/2
{ "title": "Jumping jack rabbits" }

这里用一个简单 match 查询 title 标题字段是否包含 jumping rabbits (跳跃的兔子):

GET /my_index/_search
{
"query": {
"match": {
"title": "jumping rabbits"
}
}
}

因为有了 english 分析器,这个查询是在查找以 jump 和 rabbit 这两个被提取词的文档。两个文档的 title 字段都同时包括这两个词,所以两个文档得到的评分也相同:

{
"hits": [
{
"_id": "1",
"_score": 0.42039964,
"_source": {
"title": "My rabbit jumps"
}
},
{
"_id": "2",
"_score": 0.42039964,
"_source": {
"title": "Jumping jack rabbits"
}
}
]
}

如果只是查询 title.std 字段,那么只有文档 2 是匹配的。尽管如此,如果同时查询两个字段,然后使用 bool 查询将评分结果 合并 ,那么两个文档都是匹配的( title 字段的作用),而且文档 2 的相关度评分更高( title.std 字段的作用):

GET /my_index/_search
{
"query": {
"multi_match": {
"query": "jumping rabbits",
"type": "most_fields",

            "fields": [ "title", "title.std" ]
}
}
}

我们希望将所有匹配字段的评分合并起来,所以使用 most_fields 类型。这让 multi_match 查询用 bool 查询将两个字段语句包在里面,而不是使用 dis_max 查询。

{
"hits": [
{
"_id": "2",
"_score": 0.8226396,

        "_source": {
"title": "Jumping jack rabbits"
}
},
{
"_id": "1",
"_score": 0.10741998,

        "_source": {
"title": "My rabbit jumps"
}
}
]
}

 

文档 2 现在的评分要比文档 1 高。

用广度匹配字段 title 包括尽可能多的文档——以提升召回率——同时又使用字段 title.std 作为 信号 将相关度更高的文档置于结果顶部。

每个字段对于最终评分的贡献可以通过自定义值 boost 来控制。比如,使 title 字段更为重要,这样同时也降低了其他信号字段的作用:

GET /my_index/_search
{
"query": {
"multi_match": {
"query": "jumping rabbits",
"type": "most_fields",
"fields": [ "title^10", "title.std" ]

        }
}
}

title 字段的 boost 的值为 10 使它比 title.std 更重要。

https://www.elastic.co/guide/cn/elasticsearch/guide/current/most-fields.html

Elasticsearch: 权威指南 » 深入搜索 » 多字段搜索 » 多数字段 good的更多相关文章

  1. 初识Elastic search—附《Elasticsearch权威指南—官方guide的译文》

    本文作为Elastic search系列的开篇之作,简要介绍其简要历史.安装及基本概念和核心模块. 简史 Elastic search基于Lucene(信息检索引擎,ES里一个index—索引,一个索 ...

  2. Elasticsearch权威指南(中文版)

    Elasticsearch权威指南(中文版) 下载地址: https://pan.baidu.com/s/1bUGJmwS2Gp0B32xUyXxCIw 扫码下面二维码关注公众号回复100010 获取 ...

  3. Elasticsearch: 权威指南(官方教程)

    <Elasticsearch 权威指南>中文版 序言 前言 基础入门 深入搜索 处理人类语言 聚合 地理位置 数据建模 管理.监控和部署

  4. Elasticsearch 权威指南

    Elasticsearch 权威指南 http://fuxiaopang.gitbooks.io/learnelasticsearch/content/index.html

  5. Elasticsearch 权威指南 NESTAPI地址

    Elasticsearch 权威指南:http://fuxiaopang.gitbooks.io/learnelasticsearch/content/index.html NEST:http://n ...

  6. elasticsearch权威指南

    elasticsearch权威指南 https://elasticsearch.cn/book/elasticsearch_definitive_guide_2.x/

  7. elasticsearch 权威指南搜索阅读笔记(四)

    多索引多type搜索 分页搜索 每页5条 查询一到3页数据 第一页:http://127.0.0.1:9200/blogs2/product/_search?size=5&from=0 第二页 ...

  8. IDA Pro 权威指南学习笔记(九) - 数据搜索

    Search -> Next Code 命令将光标移动到下一个包含指令的位置 Jump -> Jump to Function 命令可以打开所有函数,可以迅速选择一个函数并导航到该函数所在 ...

  9. ElasticSearch权威指南学习(结构化查询)

    请求体查询 简单查询语句(lite)是一种有效的命令行adhoc查询.但是,如果你想要善用搜索,你必须使用请求体查询(request body search)API. 空查询 我们以最简单的 sear ...

  10. ElasticSearch权威指南学习(映射和分析)

    概念 映射(mapping)机制用于进行字段类型确认,将每个字段匹配为一种确定的数据类型(string, number, booleans, date等).+ 分析(analysis)机制用于进行全文 ...

随机推荐

  1. 操作系统 - Linux进程实现的内部结构

    在进程描述符中进入几个字段来表示进程之间的父子关系和兄弟关系. 图3-4显示了一组进程间的亲属关系. 表3-4:建立非亲属关系的进程描述符字段 在某些情况下,内核必须能从进程的PID到处对应的进程描述 ...

  2. 细说Android事件传递

    一.View的dispatchTouchEvent和onTouchEvent 探讨Android事件传递机制前,明确android的两大基础控件类型:View和ViewGroup.View即普通的控件 ...

  3. Linux - 主机的细部权限规划:ACL 的使用

    ACL 是 Access Control List 的缩写,主要的目的是在提供传统的 owner,group,others 的 read,write,execute 权限之外的细部权限配置.ACL 可 ...

  4. hbase thrift 访问队列

    public class CallQueue implements BlockingQueue<Runnable> {   private static Log LOG = LogFact ...

  5. HashMap是无序的

    一. 说明 HashMap是基于哈希表Map的实现.设计初衷主要是为了解决键值(key-value)对应关联的,HashMap的优势是可以很快的根据键(key)找到该键对应的值(value),但是我们 ...

  6. M1卡区块控制位详解

    M1卡区块控制位详解 Mifare 1S50/Mifare 1S70 每个扇区的密码和存取控制都是独立的,可以根据实际需要设定各自的密码及存取 控制.存取控制为4个字节,共32位,扇区中的每个块(包括 ...

  7. 代理网络中安装tomcat的注意事项

    搭建J2EE开发环境的时候,tomcat怎么都没办法访问主页面.主要的问题就是Network Error (tcp_error) 百度了半天也没搞明白,最后没办法,打算重装tomcat,便对照完整的安 ...

  8. javascript随机一个1-9的数字

    window.onload=function(){        var oTxt=document.getElementById('txt');        for(i=1;i<=200;i ...

  9. access窗口标签居中

    Private Sub Form_Resize() On Error Resume Next Me.Width = Me.InsideWidth Me.Section(acDetail).Height ...

  10. Fast Paxos

    http://blog.csdn.net/chen77716/article/details/7297122 自从Lamport在1998年发表Paxos算法后,对Paxos的各种改进工作就从未停止, ...