参考学习资料:

Python、NumPy和SciPy介绍:http://cs231n.github.io/python-numpy-tutorial

NumPy和SciPy快速入门:https://docs.scipy.org/doc/numpy-dev/user/quickstart.html

Python的数据分析: numpy和pandas入门:http://mp.weixin.qq.com/s/2GxvBC5WWRt8eT1JnVqx1w

1.ndarray的创建与数据类型

1.Numpy(Numerical Python)

Numpy:提供了一个在Python中做科学计算的基础库,重在数值计算,主要用于多维数组(矩阵)处理的库。用来存储和处理大型矩阵,比Python自身的嵌套列表结构要高效的多。本身是由C语言开发,是个很基础的扩展,Python其余的科学计算扩展大部分都是以此为基础。

  • 高性能科学计算和数据分析的基础包
  • ndarray,多维数组(矩阵),具有矢量运算能力,快速、节省空间
  • 矩阵运算,无需循环,可完成类似Matlab中的矢量运算
  • 线性代数、随机数生成
  • import numpy as np

2.ndarray 多维数组(N Dimension Array)

NumPy数组是一个多维的数组对象(矩阵),称为ndarray,具有矢量算术运算能力和复杂的广播能力,并具有执行速度快和节省空间的特点。

注意:ndarray的下标从0开始,且数组里的所有元素必须是相同类型

  • ndarray拥有的属性

    • ndim属性:维度个数
    • shape属性:维度大小
    • dtype属性:数据类型

ndarray的随机创建

通过随机抽样 (numpy.random) 生成随机数据。

  • 示例代码:
# 导入numpy,别名np
import numpy as np

# 生成指定维度大小(3行4列)的随机多维浮点型数据(二维),rand固定区间0.0 ~ 1.0
arr = np.random.rand(3, 4)
print(arr)
print(type(arr))

# 生成指定维度大小(3行4列)的随机多维整型数据(二维),randint()可以指定区间(-1, 5)
arr = np.random.randint(-1, 5, size = (3, 4)) # 'size='可省略
print(arr)
print(type(arr))

# 生成指定维度大小(3行4列)的随机多维浮点型数据(二维),uniform()可以指定区间(-1, 5)
arr = np.random.uniform(-1, 5, size = (3, 4)) # 'size='可省略
print(arr)
print(type(arr))

print('维度个数: ', arr.ndim)
print('维度大小: ', arr.shape)
print('数据类型: ', arr.dtype)
  • 运行结果:
[[ 0.09371338  0.06273976  0.22748452  0.49557778]
 [ 0.30840042  0.35659161  0.54995724  0.018144  ]
 [ 0.94551493  0.70916088  0.58877255  0.90435672]]
<class 'numpy.ndarray'>

[[ 1  3  0  1]
 [ 1  4  4  3]
 [ 2  0 -1 -1]]
<class 'numpy.ndarray'>

[[ 2.25275308  1.67484038 -0.03161878 -0.44635706]
 [ 1.35459097  1.66294159  2.47419548 -0.51144655]
 [ 1.43987571  4.71505054  4.33634358  2.48202309]]
<class 'numpy.ndarray'>

维度个数:  2
维度大小:  (3, 4)
数据类型:  float64

3.ndarray的序列创建

1. np.array(collection)

collection 为 序列型对象(list)、嵌套序列对象(list of list)。

  • 示例代码:
# list序列转换为 ndarray
lis = range(10)
arr = np.array(lis)

print(arr)            # ndarray数据
print(arr.ndim)        # 维度个数
print(arr.shape)    # 维度大小

# list of list嵌套序列转换为ndarray
lis_lis = [range(10), range(10)]
arr = np.array(lis_lis)

print(arr)            # ndarray数据
print(arr.ndim)        # 维度个数
print(arr.shape)    # 维度大小
  • 运行结果:
# list序列转换为 ndarray
[0 1 2 3 4 5 6 7 8 9]
1
(10,)

# list of list嵌套序列转换为 ndarray
[[0 1 2 3 4 5 6 7 8 9]
 [0 1 2 3 4 5 6 7 8 9]]
2
(2, 10)

2. np.zeros()

指定大小的全0数组。注意:第一个参数是元组,用来指定大小,如(3, 4)。

3. np.ones()

指定大小的全1数组。注意:第一个参数是元组,用来指定大小,如(3, 4)。

4. np.empty()

初始化数组,不是总是返回全0,有时返回的是未初始的随机值(内存里的随机值)。

  • 示例代码:
# np.zeros
zeros_arr = np.zeros((3, 4))

# np.ones
ones_arr = np.ones((2, 3))

# np.empty
empty_arr = np.empty((3, 3))

# np.empty 指定数据类型
empty_int_arr = np.empty((3, 3), int)

print('------zeros_arr-------')
print(zeros_arr)

print('\n------ones_arr-------')
print(ones_arr)

print('\n------empty_arr-------')
print(empty_arr)

print('\n------empty_int_arr-------')
print(empty_int_arr)
  • 运行结果:
------zeros_arr-------
[[ 0.  0.  0.  0.]
 [ 0.  0.  0.  0.]
 [ 0.  0.  0.  0.]]

------ones_arr-------
[[ 1.  1.  1.]
 [ 1.  1.  1.]]

------empty_arr-------
[[ 0.  0.  0.]
 [ 0.  0.  0.]
 [ 0.  0.  0.]]

------empty_int_arr-------
[[0 0 0]
 [0 0 0]
 [0 0 0]]

5. np.arange() 和 reshape()

arange() 类似 python 的 range() ,创建一个一维 ndarray 数组。

reshape() 将 重新调整数组的维数。

  • 示例代码:
# np.arange()
arr = np.arange(15) # 15个元素的 一维数组
print(arr)
print(arr.reshape(3, 5)) # 3x5个元素的 二维数组
print(arr.reshape(1, 3, 5)) # 1x3x5个元素的 三维数组
  • 运行结果:
[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14]

[[ 0  1  2  3  4]
 [ 5  6  7  8  9]
 [10 11 12 13 14]]

[[[ 0  1  2  3  4]
  [ 5  6  7  8  9]
  [10 11 12 13 14]]]

6. np.arange() 和 random.shuffle()

random.shuffle() 将打乱数组序列(类似于洗牌)。

  • 示例代码:
arr = np.arange(15)
print(arr)

np.random.shuffle(arr)
print(arr)
print(arr.reshape(3,5))
  • 运行结果:
[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14]

[ 5  8  1  7  4  0 12  9 11  2 13 14 10  3  6]

[[ 5  8  1  7  4]
 [ 0 12  9 11  2]
 [13 14 10  3  6]]

4.ndarray的数据类型

1. dtype参数

指定数组的数据类型,类型名+位数,如float64, int32

2.astype方法

转换数组的数据类型

  • 示例代码:
# 初始化3行4列数组,数据类型为float64
zeros_float_arr = np.zeros((3, 4), dtype=np.float64)
print(zeros_float_arr)
print(zeros_float_arr.dtype)

# astype转换数据类型,将已有的数组的数据类型转换为int32
zeros_int_arr = zeros_float_arr.astype(np.int32)
print(zeros_int_arr)
print(zeros_int_arr.dtype)
  • 运行结果:
[[ 0.  0.  0.  0.]
 [ 0.  0.  0.  0.]
 [ 0.  0.  0.  0.]]
float64

[[0 0 0 0]
 [0 0 0 0]
 [0 0 0 0]]
int32

5.ndarray的矩阵运算

数组是编程中的概念,矩阵、矢量是数学概念。

在计算机编程中,矩阵可以用数组形式定义,矢量可以用结构定义!

1. 矢量运算:相同大小的数组间运算应用在元素上

  • 示例代码:
# 矢量与矢量运算
arr = np.array([[1, 2, 3],
                [4, 5, 6]])

print("元素相乘:")
print(arr * arr)

print("矩阵相加:")
print(arr + arr)
  • 运行结果:
元素相乘:
[[ 1  4  9]
 [16 25 36]]

矩阵相加:
[[ 2  4  6]
 [ 8 10 12]]

2. 矢量和标量运算:"广播" - 将标量"广播"到各个元素

  • 示例代码:
# 矢量与标量运算
print(1. / arr)
print(2. * arr)
  • 运行结果:
[[ 1.          0.5         0.33333333]
 [ 0.25        0.2         0.16666667]]

[[  2.   4.   6.]
 [  8.  10.  12.]]

6.ndarray的索引与切片

1. 一维数组的索引与切片

与Python的列表索引功能相似

  • 示例代码:
# 一维数组
arr1 = np.arange(10)
print(arr1)
print(arr1[2:5])
  • 运行结果:
[0 1 2 3 4 5 6 7 8 9]
[2 3 4]

2. 多维数组的索引与切片:

arr[r1:r2, c1:c2]

arr[1,1] 等价 arr[1][1]

[:] 代表某个维度的数据
  • 示例代码:
# 多维数组
arr2 = np.arange(12).reshape(3,4)
print(arr2)

print(arr2[1])

print(arr2[0:2, 2:])

print(arr2[:, 1:3])
  • 运行结果:
[[ 0  1  2  3]
 [ 4  5  6  7]
 [ 8  9 10 11]]

[4 5 6 7]

[[2 3]
 [6 7]]

[[ 1  2]
 [ 5  6]
 [ 9 10]]

3. 条件索引

布尔值多维数组:arr[condition],condition也可以是多个条件组合。

注意,多个条件组合要使用 & | 连接,而不是Python的 and or。

  • 示例代码:
# 条件索引

# 找出 data_arr 中 2005年后的数据
data_arr = np.random.rand(3,3)
print(data_arr)

year_arr = np.array([[2000, 2001, 2000],
                     [2005, 2002, 2009],
                     [2001, 2003, 2010]])

is_year_after_2005 = year_arr >= 2005
print(is_year_after_2005, is_year_after_2005.dtype)

filtered_arr = data_arr[is_year_after_2005]
print(filtered_arr)

#filtered_arr = data_arr[year_arr >= 2005]
#print(filtered_arr)

# 多个条件
filtered_arr = data_arr[(year_arr <= 2005) & (year_arr % 2 == 0)]
print(filtered_arr)
  • 运行结果:
[[ 0.53514038  0.93893429  0.1087513 ]
 [ 0.32076215  0.39820313  0.89765765]
 [ 0.6572177   0.71284822  0.15108756]]

[[False False False]
 [ True False  True]
 [False False  True]] bool

[ 0.32076215  0.89765765  0.15108756]

#[ 0.32076215  0.89765765  0.15108756]

[ 0.53514038  0.1087513   0.39820313]

7.ndarray的维数转换

二维数组直接使用转换函数:transpose()

高维数组转换要指定维度编号参数 (0, 1, 2, …),注意参数是元组

  • 示例代码:
arr = np.random.rand(2,3)    # 2x3 数组
print(arr)
print(arr.transpose()) # 转换为 3x2 数组

arr3d = np.random.rand(2,3,4) # 2x3x4 数组,2对应0,3对应1,4对应3
print(arr3d)
print(arr3d.transpose((1,0,2))) # 根据维度编号,转为为 3x2x4 数组
  • 运行结果:
# 二维数组转换
# 转换前:
[[ 0.50020075  0.88897914  0.18656499]
 [ 0.32765696  0.94564495  0.16549632]]

# 转换后:
[[ 0.50020075  0.32765696]
 [ 0.88897914  0.94564495]
 [ 0.18656499  0.16549632]]

# 高维数组转换
# 转换前:
[[[ 0.91281153  0.61213743  0.16214062  0.73380458]
  [ 0.45539155  0.04232412  0.82857746  0.35097793]
  [ 0.70418988  0.78075814  0.70963972  0.63774692]]

 [[ 0.17772347  0.64875514  0.48422954  0.86919646]
  [ 0.92771033  0.51518773  0.82679073  0.18469917]
  [ 0.37260457  0.49041953  0.96221477  0.16300198]]]

# 转换后:
[[[ 0.91281153  0.61213743  0.16214062  0.73380458]
  [ 0.17772347  0.64875514  0.48422954  0.86919646]]

 [[ 0.45539155  0.04232412  0.82857746  0.35097793]
  [ 0.92771033  0.51518773  0.82679073  0.18469917]]

 [[ 0.70418988  0.78075814  0.70963972  0.63774692]
  [ 0.37260457  0.49041953  0.96221477  0.16300198]]]

8.ndarray的元素处理

元素计算函数

ceil(): 向上最接近的整数,参数是 number 或 array

floor():向下最接近的整数,参数是 number 或 array

rint(): 四舍五入,参数是 number 或 array

isnan(): 判断元素是否为 NaN(Not a Number),参数是 number 或 array

multiply(): 元素相乘,参数是 number 或 array

divide(): 元素相除,参数是 number 或 array

abs():元素的绝对值,参数是 number 或 array

where(condition, x, y):三元运算符,x if condition else y

  • 示例代码:
# randn() 返回具有标准正态分布的序列。
arr = np.random.randn(2,3)

print(arr)

print(np.ceil(arr))

print(np.floor(arr))

print(np.rint(arr))

print(np.isnan(arr))

print(np.multiply(arr, arr))

print(np.divide(arr, arr))

print(np.where(arr > 0, 1, -1))
  • 运行结果:
# print(arr)
[[-0.8350279   0.44716655  0.93326866]
 [ 0.22468383 -0.48611045  0.38554865]]

# print(np.ceil(arr))
[[-0.  1.  1.]
 [ 1. -0.  1.]]

# print(np.floor(arr))
[[-1.  0.  0.]
 [ 0. -1.  0.]]

# print(np.rint(arr))
[[-1.  0.  1.]
 [ 0. -0.  0.]]

# print(np.isnan(arr))
[[False False False]
 [False False False]]

# print(np.multiply(arr, arr))
[[  5.16284053e+00   1.77170104e+00   3.04027254e-02]
 [  5.11465231e-03   3.46109263e+00   1.37512421e-02]]

# print(np.divide(arr, arr))
[[ 1.  1.  1.]
 [ 1.  1.  1.]]

# print(np.where(arr > 0, 1, -1))
[[-1  1  1]
 [ 1 -1  1]]

元素统计函数

1 .np.mean(), np.sum():所有元素的平均值,所有元素的和,参数是 number 或 array

2 .np.max(), np.min():所有元素的最大值,所有元素的最小值,参数是 number 或 array

3 .np.std(), np.var():所有元素的标准差,所有元素的方差,参数是 number 或 array

4 .np.argmax(), np.argmin():最大值的下标索引值,最小值的下标索引值,参数是 number 或 array

5 .np.cumsum(), np.cumprod():返回一个一维数组,每个元素都是之前所有元素的 累加和 和 累乘积,参数是 number 或 array

6 .多维数组默认统计全部维度,axis参数可以按指定轴心统计,值为0则按列统计,值为1则按行统计。

  • 示例代码:
arr = np.arange(12).reshape(3,4)
print(arr)

print(np.cumsum(arr)) # 返回一个一维数组,每个元素都是之前所有元素的 累加和

print(np.sum(arr)) # 所有元素的和

print(np.sum(arr, axis=0)) # 数组的按列统计和

print(np.sum(arr, axis=1)) # 数组的按行统计和
  • 运行结果:
# print(arr)
[[ 0  1  2  3]
 [ 4  5  6  7]
 [ 8  9 10 11]]

# print(np.cumsum(arr))
[ 0  1  3  6 10 15 21 28 36 45 55 66]

# print(np.sum(arr)) # 所有元素的和
66

# print(np.sum(arr, axis=0)) # 0表示对数组的每一列的统计和
[12 15 18 21]

# print(np.sum(arr, axis=1)) # 1表示数组的每一行的统计和
[ 6 22 38]

元素判断函数

1 .np.any(): 至少有一个元素满足指定条件,返回True

2 .np.all(): 所有的元素满足指定条件,返回True

  • 示例代码:
arr = np.random.randn(2,3)
print(arr)

print(np.any(arr > 0))
print(np.all(arr > 0))
  • 运行结果:
[[ 0.05075769 -1.31919688 -1.80636984]
 [-1.29317016 -1.3336612  -0.19316432]]

True
False

元素去重排序函数

np.unique():找到唯一值并返回排序结果,类似于Python的set集合

  • 示例代码:
arr = np.array([[1, 2, 1], [2, 3, 4]])
print(arr)

print(np.unique(arr))
  • 运行结果:
[[1 2 1]
 [2 3 4]]

[1 2 3 4]

9.2016年美国总统大选民意调查数据统计

项目地址:https://www.kaggle.com/fivethirtyeight/2016-election-polls

该数据集包含了2015年11月至2016年11月期间对于2016美国大选的选票数据,共27列数据

  • 示例代码1 :
# loadtxt
import numpy as np

# csv 名逗号分隔值文件
filename = './presidential_polls.csv'

# 通过loadtxt()读取本地csv文件
data_array = np.loadtxt(filename,      # 文件名
                        delimiter=',', # 分隔符
                        dtype=str,     # 数据类型,数据是Unicode字符串
                        usecols=(0,2,3)) # 指定读取的列号

# 打印ndarray数据,保留第一行
print(data_array, data_array.shape)
  • 运行结果:
[["b'cycle'" "b'type'" "b'matchup'"]
 ["b'2016'" 'b\'"polls-plus"\'' 'b\'"Clinton vs. Trump vs. Johnson"\'']
 ["b'2016'" 'b\'"polls-plus"\'' 'b\'"Clinton vs. Trump vs. Johnson"\'']
 ...,
 ["b'2016'" 'b\'"polls-only"\'' 'b\'"Clinton vs. Trump vs. Johnson"\'']
 ["b'2016'" 'b\'"polls-only"\'' 'b\'"Clinton vs. Trump vs. Johnson"\'']
 ["b'2016'" 'b\'"polls-only"\'' 'b\'"Clinton vs. Trump vs. Johnson"\'']] (10237, 3)
  • 示例代码2:
import numpy as np
# 读取列名,即第一行数据
with open(filename, 'r') as f:
    col_names_str = f.readline()[:-1] # [:-1]表示不读取末尾的换行符'\n'

# 将字符串拆分,并组成列表
col_name_lst = col_names_str.split(',')

# 使用的列名:结束时间,克林顿原始票数,川普原始票数,克林顿调整后票数,川普调整后票数
use_col_name_lst = ['enddate', 'rawpoll_clinton', 'rawpoll_trump','adjpoll_clinton', 'adjpoll_trump']

# 获取相应列名的索引号
use_col_index_lst = [col_name_lst.index(use_col_name) for use_col_name in use_col_name_lst]

# 通过genfromtxt()读取本地csv文件,
data_array = np.genfromtxt(filename,      # 文件名
                        delimiter=',', # 分隔符
                        #skiprows=1,    # 跳过第一行,即跳过列名
                        dtype=str,     # 数据类型,数据不再是Unicode字符串
                        usecols=use_col_index_lst)# 指定读取的列索引号

# genfromtxt() 不能通过 skiprows 跳过第一行的
# ['enddate' 'rawpoll_clinton' 'rawpoll_trump' 'adjpoll_clinton' 'adjpoll_trump']

# 去掉第一行
data_array = data_array[1:]

# 打印ndarray数据
print(data_array[1:], data_array.shape)
  • 运行结果:
[[' '43.29659' '44.72984']
 [' '46.29779' '40.72604']
 [' '46.35931' '45.30585']
 ...,
 ['9/22/2016' '46.54' '40.04' '45.9713' '39.97518']
 [' '45.2939' '46.66175']
 ['8/18/2016' '32.54' '43.61' '31.62721' '44.65947']] (10236, 5)


科学计算工具Numpy的更多相关文章

  1. 科学计算工具Numpy简介

    Numpy(Numerical Python) Numpy:提供了一个在Python中做科学计算的基础库,重在数值计算,主要用于多维数组(矩阵)处理的库.用来存储和处理大型矩阵,比Python自身的嵌 ...

  2. 科学计算工具-Numpy初探

    Numpy基础数据结构 Numpy数组是一个多维数组,称为ndarray.其由两部分组成: 实际的数据 描述这些数据的原数据 导入该库: import numpy as np 多维数组ndarray ...

  3. 动态可视化 数据可视化之魅D3,Processing,pandas数据分析,科学计算包Numpy,可视化包Matplotlib,Matlab语言可视化的工作,Matlab没有指针和引用是个大问题

    动态可视化 数据可视化之魅D3,Processing,pandas数据分析,科学计算包Numpy,可视化包Matplotlib,Matlab语言可视化的工作,Matlab没有指针和引用是个大问题 D3 ...

  4. python科学计算之numpy

    1.np.logspace(start,stop,num): 函数表示的意思是;在(start,stop)间生成等比数列num个 eg: import numpy as np print np.log ...

  5. Python科学计算库Numpy

    Python科学计算库Numpy NumPy(Numerical Python) 是 Python 语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库. 1.简 ...

  6. 科学计算库Numpy基础&提升(理解+重要函数讲解)

    Intro 对于同样的数值计算任务,使用numpy比直接编写python代码实现 优点: 代码更简洁: numpy直接以数组.矩阵为粒度计算并且支持大量的数学函数,而python需要用for循环从底层 ...

  7. 数据分析与科学计算可视化-----用于科学计算的numpy库与可视化工具matplotlib

    一.numpy库与matplotlib库的基本介绍 1.安装 (1)通过pip安装: >> pip install matplotlib 安装完成 安装matplotlib的方式和nump ...

  8. python科学计算库numpy和绘图库PIL的结合,素描图片(原创)

    # 导入绘图库 from PIL import Image #导入科学计算库 import numpy as np #封装一个图像处理工具类 class TestNumpy(object): def ...

  9. python科学计算模块NumPy

    NumPy是Numerical Python的简称,是高性能科学计算和数据分析的基础包.其实NumPy 本身并并没有提供太多的高级的数据分析功能, 但是理解NumPy数组以及面向数组的计算将有利于你更 ...

随机推荐

  1. java实现Quartz定时功能

    本文是在学习中的总结,欢迎转载但请注明出处:http://blog.csdn.net/pistolove/article/details/49975443 最近在学习定时相关的技术.当前,几乎所有的互 ...

  2. Redis配置信息

    # Redis configuration file example # Note on units: when memory size is needed, it is possible to sp ...

  3. Android Xlistview的源码浅度分析 监听ListView上下滑动 以及是否到顶和底部

    如转载 请注明出处 http://blog.csdn.net/sk719887916 比如我们很多项目中会用到listview 并且要对listview滑动方向进行判断 也有需要的到listview是 ...

  4. 如果以一个树状的形式返回一个UIView的所有子视图

    该方法也是从一个视频中看到,总觉得会有很大作用,故记录在这里. 它返回一个xml的字符串,用火狐浏览器或者其他可以格式化xml的工具打开,即可查看其层级关系. /** * 返回传入view的所有层级结 ...

  5. LeetCode(30)-Pascal's Triangle

    题目: Given numRows, generate the first numRows of Pascal's triangle. For example, given numRows = 5, ...

  6. 和菜鸟一起学linux之linux性能分析工具oprofile移植

    一.内核编译选项 make menuconfig General setup---> [*] Profiling support <*> OProfile system profil ...

  7. C# 添加、读取Word脚注尾注

    脚注和尾注是对文本的补充说明.脚注一般位于页面的底部,可以作为文档某处内容的注释:尾注一般位于文档的末尾,列出引文 的出处等.在本示例中将介绍如何来添加或删除Word脚注. 工具使用:Free Spi ...

  8. 解读Raft(四 成员变更)

    将成员变更纳入到算法中是Raft易于应用到实践中的关键,相对于Paxos,它给出了明确的变更过程(实践的基础,任何现实的系统中都会遇到因为硬件故障等原因引起的节点变更的操作). 显然,我们可以通过sh ...

  9. 《C++标准程序库》学习笔记(一)C++相关特性

    抱着本厚厚的<C++标准库>读了几天,想想也该写点关于用法的总结,一来怕今后容易忘记,二来将书上的事例重新敲一遍,巩固对程序库相关知识的了解.今天开第一篇,以后不固定更新.当然,笔者所读为 ...

  10. 什么是shell? bash和shell有什么关系?

    什么是shell? bash和shell有什么关系? 博客分类: Linux   什么是Shell?      shell是你(用户)和Linux(或者更准确的说,是你和Linux内核)之间的接口程序 ...