Scikit-learn:分类classification
http://blog.csdn.net/pipisorry/article/details/53034340
支持向量机SVM分类
svm分类有多种不同的算法。SVM是非常流行的机器学习算法,主要用于分类问题,如同逻辑回归问题,它可以使用一对多的方法进行多类别的分类。
svc
Implementation of Support Vector Machine classifier using libsvm: the kernel can be non-linear but its SMO algorithm does not scale to large number of samples as LinearSVC does. Furthermore SVC multi-class mode is implemented using one vs one scheme while LinearSVC uses one vs the rest. It is possible to implement one vs the rest with SVC by using the sklearn.multiclass.OneVsRestClassifier wrapper. Finally SVC can fit dense data without memory copy if the input is C-contiguous. Sparse data will still incur memory copy though.
class sklearn.svm.SVC(C=1.0, kernel='rbf', degree=3, gamma='auto', coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape=None, random_state=None)
常用参数
probability : boolean, optional (default=False)
Whether to enable probability estimates. This must be enabled priorto calling fit, and will slow down that method.
常用属性
coef_ : array, shape = [n_class-1, n_features]
常用方法Methods
decision_function (X) |
Distance of the samples X to the separating hyperplane. |
fit (X, y[, sample_weight]) |
Fit the SVM model according to the given training data. |
get_params ([deep]) |
Get parameters for this estimator. |
predict (X) |
Perform classification on samples in X. |
score (X, y[, sample_weight]) |
Returns the mean accuracy on the given test data and labels. |
set_params (**params) |
Set the parameters of this estimator. |
如果之前设置了参数probability=True,则可以使用输出概率函数
predict_proba
-
Compute probabilities of possible outcomes for samples in X.
The model need to have probability information computed at trainingtime: fit with attribute probability set to True.
Parameters: X : array-like, shape (n_samples, n_features)
For kernel=”precomputed”, the expected shape of X is[n_samples_test, n_samples_train]
Returns: T : array-like, shape (n_samples, n_classes)
Returns the probability of the sample for each class inthe model. The columns correspond to the classes in sortedorder, as they appear in the attribute classes_.
Notes The probability model is created using cross validation, sothe results can be slightly different than those obtained bypredict. Also, it will produce meaningless results on very smalldatasets.
使用示例
>>> import numpy as np >>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) >>> y = np.array([1, 1, 2, 2]) >>> from sklearn.svm import SVC >>> clf = SVC() >>> clf.fit(X, y) SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, decision_function_shape=None, degree=3, gamma='auto', kernel='rbf', max_iter=-1, probability=False, random_state=None, shrinking=True, tol=0.001, verbose=False) >>> print(clf.predict([[-0.8, -1]])) [1]
[sklearn.svm.SVC¶]
LinearSVC
Implementation of Support Vector Machine classifier using the same library as this class (liblinear).
Scalable Linear Support Vector Machine for classification implemented using liblinear. Check the See also section of LinearSVC for more comparison element.
SVR
Support Vector Machine for Regression implemented using libsvm.
NuSVR
Support Vector Machine for regression implemented using libsvm using a parameter to control the number of support vectors.
LinearSVR
Scalable Linear Support Vector Machine for regression implemented using liblinear.
from: http://blog.csdn.net/pipisorry/article/details/53034340
ref:
Scikit-learn:分类classification的更多相关文章
- scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)
scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...
- (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探
目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...
- Scikit Learn: 在python中机器学习
转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...
- CVPR 2013 关于图像/场景分类(classification)的文章paper list
CVPR 2013 关于图像/场景分类(classification)的文章paper list 八14by 小军 这个搜罗了cvpr2013有关于classification的相关文章,自己得m ...
- W3School-CSS 分类 (Classification) 实例
CSS 分类 (Classification) 实例 CSS 实例 CSS 背景实例 CSS 文本实例 CSS 字体(font)实例 CSS 边框(border)实例 CSS 外边距 (margin) ...
- (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探
一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...
- CSS 分类 (Classification) 实例
CSS 分类 (Classification) 实例CSS 分类属性 (Classification)CSS 分类属性允许你控制如何显示元素,设置图像显示于另一元素中的何处,相对于其正常位置来定位元素 ...
- Scikit Learn
Scikit Learn Scikit-Learn简称sklearn,基于 Python 语言的,简单高效的数据挖掘和数据分析工具,建立在 NumPy,SciPy 和 matplotlib 上.
- 机器学习-scikit learn学习笔记
scikit-learn官网:http://scikit-learn.org/stable/ 通常情况下,一个学习问题会包含一组学习样本数据,计算机通过对样本数据的学习,尝试对未知数据进行预测. 学习 ...
随机推荐
- spring加载xml的六种方式
因为目前正在从事一个项目,项目中一个需求就是所有的功能都是插件的形式装入系统,这就需要利用Spring去动态加载某一位置下的配置文件,所以就总结了下Spring中加载xml配置文件的方式,我总结的有6 ...
- jqurey datatables属性
$('selector').dataTable( { /* * 默认为true * 是否自动计算列宽,计算列宽会花费一些时间,如果列宽通过aoColumns传递,可以关闭该属性作为优化 */ &quo ...
- SpringBoot开发案例之多任务并行+线程池处理
前言 前几篇文章着重介绍了后端服务数据库和多线程并行处理优化,并示例了改造前后的伪代码逻辑.当然了,优化是无止境的,前人栽树后人乘凉.作为我们开发者来说,既然站在了巨人的肩膀上,就要写出更加优化的程序 ...
- [LeetCode] Increasing Subsequences 递增子序列
Given an integer array, your task is to find all the different possible increasing subsequences of t ...
- Java中数据表的建立
class Emp{ private int empno;//职工编号 private String ename;//姓名 private String job;//职位 private double ...
- python-文件操作和集合
1.打开文件 如果文件不存在会报错 f = open('information.txt','r+') 2.读取文件 read 读取文件 readline 读取文件的一行内容 readlines 读取文 ...
- linux 基本使用命令
arch 显示机器的处理器架构(1) uname -m 显示机器的处理器架构(2) uname -r 显示正在使用的内核版本 dmidecode -q 显示硬件系统部件 - (SMBIOS / DMI ...
- java--Iterator迭代问题:集合并发访问异常
用Iterator对数组进行迭代后,如果在迭代过程中对数组进行增加元素操作(这里iterator本身没有提供增加操作方法)时,就会抛出并发访问异常: 异常如下: Exception in thread ...
- CentOS6.9安装
我安装在VM的虚拟机中.具体安装方式网上很多,由于本机只能安装32位的linux系统,所以悬在了Centsos6.9版本.点此下载. 其中有一种是叫做LIVEDVD的版本,这种的值虚拟机中配置后,打开 ...
- 《C++ Primer》学习笔记:3.3.3其他vector操作
<C++ Primer>(第五版)中计算vector对象中的索引这一小节中,举例要求计算各个分数段各有多少个成绩. 代码如下: #include <iostream> #inc ...