大概题意

有\(n\)个数,可以为\(0/1\),给\(m\)个条件,表示某两个数经过\(or, and, xor\)后的数是多少

判断是否有解

Sol

\(2-SAT\)判定

建图

# include <iostream>
# include <stdio.h>
# include <stdlib.h>
# include <string.h>
# include <math.h>
# include <algorithm>
# define RG register
# define IL inline
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll;
const int _(2005);
const int __(4e6 + 5); IL int Input(){
RG int x = 0, z = 1; RG char c = getchar();
for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x * z;
} int n, m, first[_], cnt, num;
int S[_], vis[_], dfn[_], low[_], Index, col[_];
struct Edge{
int to, next;
} edge[__]; IL void Add(RG int u, RG int v){
edge[cnt] = (Edge){v, first[u]}; first[u] = cnt++;
} IL void Tarjan(RG int u){
vis[u] = 1, dfn[u] = low[u] = ++Index, S[++S[0]] = u;
for(RG int e = first[u]; e != -1; e = edge[e].next){
RG int v = edge[e].to;
if(!dfn[v]) Tarjan(v), low[u] = min(low[u], low[v]);
else if(vis[v]) low[u] = min(low[u], dfn[v]);
}
if(dfn[u] != low[u]) return;
RG int v = S[S[0]--]; col[v] = ++num, vis[v] = 0;
while(v != u) v = S[S[0]--], col[v] = num, vis[v] = 0;
} int main(RG int argc, RG char* argv[]){
Fill(first, -1), n = Input(), m = Input();
for(RG int i = 1; i <= m; ++i){
RG int u = Input() + 1, v = Input() + 1, w = Input();
RG char op; scanf(" %c", &op);
if(op == 'A'){
if(w) Add(u, v), Add(v, u), Add(u + n, u), Add(v + n, v);
else Add(u, v + n), Add(v, u + n);
}
else if(op == 'O'){
if(w) Add(u + n, v), Add(v + n, u);
else Add(u, u + n), Add(v, v + n), Add(u + n, v + n), Add(v + n, u + n);
}
else{
if(w) Add(u, v + n), Add(v, u + n), Add(u + n, v), Add(v + n, u);
else Add(u, v), Add(v, u), Add(u + n, v + n), Add(v + n, u + n);
}
}
for(RG int i = 1, tmp = n << 1; i <= tmp; ++i)
if(!dfn[i]) Tarjan(i);
for(RG int i = 1; i <= n; ++i)
if(col[i] == col[i + n]) return puts("NO"), 0;
return puts("YES"), 0;
}

Poj3678:Katu Puzzle的更多相关文章

  1. POJ3678:Katu Puzzle——题解

    http://poj.org/problem?id=3678 总觉得这题比例题简单. 设a为x取0的点,a+n为x取1的点. 我们还是定义a到b表示取a必须取b. 那么我们有: 当AND: 1.当c= ...

  2. poj3678 Katu Puzzle 2-SAT

    Katu Puzzle Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6714   Accepted: 2472 Descr ...

  3. POJ3678 Katu Puzzle 【2-sat】

    题目 Katu Puzzle is presented as a directed graph G(V, E) with each edge e(a, b) labeled by a boolean ...

  4. poj 3678 Katu Puzzle(2-sat)

    Description Katu Puzzle ≤ c ≤ ). One Katu ≤ Xi ≤ ) such that for each edge e(a, b) labeled by op and ...

  5. POJ 3678 Katu Puzzle(2 - SAT) - from lanshui_Yang

    Description Katu Puzzle is presented as a directed graph G(V, E) with each edge e(a, b) labeled by a ...

  6. POJ 3678 Katu Puzzle(2-SAT,合取范式大集合)

    Katu Puzzle Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9987   Accepted: 3741 Descr ...

  7. POJ 3678 Katu Puzzle (2-SAT)

                                                                         Katu Puzzle Time Limit: 1000MS ...

  8. POJ 3678 Katu Puzzle (经典2-Sat)

    Katu Puzzle Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6553   Accepted: 2401 Descr ...

  9. poj 3678 Katu Puzzle 2-SAT 建图入门

    Description Katu Puzzle is presented as a directed graph G(V, E) with each edge e(a, b) labeled by a ...

随机推荐

  1. sparksql工程小记

    最近做一个oracle项目迁移工作,跟着spark架构师学着做,进行一些方法的总结. 1.首先,创建SparkSession对象(老版本为sparkContext) val session = Spa ...

  2. C++11 左值、右值、右值引用详解

    C++11 左值.右值.右值引用详解 左值.右值 在C++11中所有的值必属于左值.右值两者之一,右值又可以细分为纯右值.将亡值. 在C++11中可以取地址的.有名字的就是左值,反之,不能取地址的.没 ...

  3. 老男孩Python全栈开发(92天全)视频教程 自学笔记05

    day5课程内容: 集成开发环境(IDE) VIM #经典的Linux下的文本编辑器 Eclipse #Java IDE Visual Studio #微软开发的IDE notepad++ subli ...

  4. Unix代码段和数据段

    关于UNIX系统代码段和数据段分开的目的:方便编程. 1)代码段:代码段是用来存放可执行文件的操作指令,也就是说是它是可执行程序在内存中的镜像.代码段需要防止在运行时被非法修改,所以只准许读取操作,而 ...

  5. 一个简单的Springmvc应用开发例子

            SpringMVC应用的配置步骤:         1,将所有的jar包导入到lib文件夹下:             jar在spring框架包-->libs-->所有的 ...

  6. 高性能网络 SR-IOV机制--VF与PF的通信

    PF 驱动是一个专门管理SR-IOV设备全局功能驱动,而且还要配置相关共享资源.PF 驱动 随着Hypervisor 的不同而不同,一般需要具有比普通虚拟机更高的权限才能对其进行操作.PF驱动包含了所 ...

  7. Android 网络之 Volley+OkHttp+Https

    Volley 已经发布很长时间了, 也已被广泛应用, 相关教程到处都是. 本文只说两个值得注意的地方. 本文讲解部分比较少, 请参阅提供的相关链接. 完整的实现代码在 Github dodocat/A ...

  8. 手把手教你在Windows环境下升级R

    在Windows环境下,我们可以使用installr包自动将R升级到最新版本.并且可以安装软件.下面主要演示如何在Windows环境下升级R,并将旧版本安装的R包复制到更新版本的R. 1.加载inst ...

  9. Eviews 9.0新功能——估计方法(ARDL、面板自回归、门限回归)

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 9.2 估计功能 eviews9.0下载链接: ...

  10. AXI总线简介

    AXI全称Advanced eXtensible Interface,是Xilinx从6系列的FPGA开始引入的一个接口协议,主要描述了主设备和从设备之间的数据传输方式.在ZYNQ中继续使用,版本是A ...