题面

题目描述

HH有个一成不变的习惯,喜欢饭后百步走。所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离。 但是同时HH又是个喜欢变化的人,所以他不会立刻沿着刚刚走来的路走回。 又因为HH是个喜欢变化的人,所以他每天走过的路径都不完全一样,他想知道他究竟有多 少种散步的方法。

现在给你学校的地图(假设每条路的长度都是一样的都是1),问长度为t,从给定地 点A走到给定地点B共有多少条符合条件的路径

输入输出格式

输入格式:

第一行:五个整数N,M,t,A,B。其中N表示学校里的路口的个数,M表示学校里的 路的条数,t表示HH想要散步的距离,A表示散步的出发点,而B则表示散步的终点。

接下来M行,每行一组Ai,Bi,表示从路口Ai到路口Bi有一条路。数据保证Ai != Bi,但 不保证任意两个路口之间至多只有一条路相连接。 路口编号从0到N − 1。 同一行内所有数据均由一个空格隔开,行首行尾没有多余空格。没有多余空行。 答案模45989。

输出格式:

一行,表示答案。

输入样例#1:

4 5 3 0 0

0 1

0 2

0 3

2 1

3 2

输出样例#1:

4

说明

对于30%的数据,N ≤ 4,M ≤ 10,t ≤ 10。

对于100%的数据,N ≤ 50,M ≤ 60,t ≤ 2^30,0 ≤ A,B

题解

首先,很容易想到DP

发现DP每一次的转移其实是相同的

因此可以使用矩阵快速幂。

但是,这里不能够直接用邻接矩阵来做快速幂

因为有不能够立刻走反向边的限制。

那么,考虑把原来的点与点之间的转移变成边与边之间的转移

每次可以从一条边走到另外一条边

此时就可以限制回边的问题

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<queue>
#include<vector>
#include<algorithm>
using namespace std;
#define MOD 45989
#define MAX 60
#define MAXL MAX*MAX
inline int read()
{
register int x=0,t=1;
register char ch=getchar();
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-'){t=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-48;ch=getchar();}
return x*t;
}
struct Line
{
int v,next;
}e[MAXL];
int h[MAX],cnt=1;
int N,M,T,A,B,ans=0;
inline void Add(int u,int v)
{
e[++cnt]=(Line){v,h[u]};h[u]=cnt;
}
struct dalao
{
int a[MAX*3][MAX*3];
}pht;
dalao operator *(dalao syc,dalao dsl)
{
dalao gay;memset(gay.a,0,sizeof(gay.a));
for(int i=1;i<=2*M+1;++i)
for(int j=1;j<=2*M+1;++j)
for(int k=1;k<=2*M+1;++k)
gay.a[i][j]=(gay.a[i][j]+syc.a[i][k]*dsl.a[k][j])%MOD;
return gay;
}
dalao Pow(dalao yl,int ball)
{
if(ball==1)return yl;
dalao zsy=Pow(yl,ball>>1);
zsy=zsy*zsy;
if(ball&1)zsy=zsy*yl;
return zsy;
}
int main()
{
N=read();M=read();T=read();A=read()+1;B=read()+1;
for(int i=1;i<=M;++i)
{
int u=read()+1,v=read()+1;
Add(u,v);Add(v,u);
}
for(int i=h[A];i;i=e[i].next)pht.a[1][i]++;
for(int i=2;i<=cnt;++i)
{
for(int j=h[e[i].v];j;j=e[j].next)
{
if(i!=(j^1))
pht.a[i][j]++;
}
}
dalao ycb=Pow(pht,T-1);
pht=pht*ycb;
for(int i=2;i<=cnt;++i)
{
if(e[i].v==B)
(ans+=pht.a[1][i])%=MOD;
}
printf("%d\n",ans);
return 0;
}

【SDOI2009】HH去散步(矩阵快速幂)的更多相关文章

  1. 【BZOJ】1875: [SDOI2009]HH去散步 矩阵快速幂

    [题意]给定n个点m边的无向图,求A到B恰好经过t条边的路径数,路径须满足每条边都和前一条边不同.n<=20,m<=60,t<=2^30. [算法]矩阵快速幂 [题解]将图的邻接矩阵 ...

  2. bzoj1875 [SDOI2009]HH去散步 矩阵快速幂

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=1875 题解 如果没有这个"不能立刻沿着刚刚走来的路走回",那么这个题就是一 ...

  3. [luogu2151 SDOI2009] HH去散步 (矩阵快速幂)

    传送门 题目描述 HH有个一成不变的习惯,喜欢饭后百步走.所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离. 但是同时HH又是个喜欢变化的人,所以他不会立刻沿着刚刚走来的路走回. 又因为HH ...

  4. bzoj1875 [SDOI2009]HH去散步——矩阵快速幂

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1875 有个限制是不能走回头路,比较麻烦: 所以把矩阵中的元素设成边的经过次数,单向边之间就好 ...

  5. 【bzoj1875】【JZYZOJ1354】[SDOI2009]HH去散步 矩阵快速幂 点边转换

    http://172.20.6.3/Problem_Show.asp?id=1354 http://www.lydsy.com/JudgeOnline/problem.php?id=1875  题意: ...

  6. BZOJ 1875 HH去散步(矩阵快速幂)

    题意: 给定一张无向图,每条路的长度都是1,没有自环,可能有重边,给定起点与终点,求从起点走t步到达终点的方案数. 每一步走的时候要求不能走上一条刚刚走的路. 解析: 显然需要搞出个矩阵之后矩乘. 然 ...

  7. bzoj 1875: [SDOI2009]HH去散步 -- 矩阵乘法

    1875: [SDOI2009]HH去散步 Time Limit: 20 Sec  Memory Limit: 64 MB Description HH有个一成不变的习惯,喜欢饭后百步走.所谓百步走, ...

  8. 洛谷P2151 [SDOI2009] HH去散步 [矩阵加速]

    题目传送门 HH去散步 题目描述 HH有个一成不变的习惯,喜欢饭后百步走.所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离. 但是同时HH又是个喜欢变化的人,所以他不会立刻沿着刚刚走来的路走 ...

  9. 【bzoj1875】[SDOI2009]HH去散步 矩阵乘法

    题目描述 一张N个点M条边的无向图,从A走到B,要求:每一次不能立刻沿着上一次的边的反方向返回.求方案数. 输入 第一行:五个整数N,M,t,A,B. N表示学校里的路口的个数 M表示学校里的路的条数 ...

  10. BZOJ1875 [SDOI2009]HH去散步 矩阵

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1875 题意概括 在一个无向图(有重边无自环)中走,不能在经过连续经过某一条边2次. 现在走t步,问 ...

随机推荐

  1. jQuery中animate()方法用法实例

    本文实例讲述了jQuery中animate()方法用法.分享给大家供大家参考.具体分析如下: 此方法用于创建自定义动画,并且能够规定动画执行时长.擦除效果.动画完成后还可以地触发一个回调函数. ani ...

  2. Nginx日志分析及脚本编写

    在我们日常的运维中,当Nginx服务器正常运行后,我们会经常密切关注Nginx访问日志的相关情况,发现有异常的日志信息需要进行及时处理. 那今天我将跟大家一起来研究和分析Nginx日志,nginx默认 ...

  3. Centos6.8安装zabbix-3.2.6

    系统环境:Centos6.8 mini软件:zabbix-3.2.6 zabbix 服务端安装 安装yum 扩展源 rpm -ivh http://repo.webtatic.com/yum/el6/ ...

  4. 图论算法-Tarjan模板 【缩点;割顶;双连通分量】

    图论算法-Tarjan模板 [缩点:割顶:双连通分量] 为小伙伴们总结的Tarjan三大算法 Tarjan缩点(求强连通分量) int n; int low[100010],dfn[100010]; ...

  5. 教我徒弟Android开发入门(二)

    前言: 上一期实现了简单的QQ登录效果,这一期继续对上一期进行扩展 本期的知识点: Toast弹窗,三种方法实现按钮的点击事件监听 正文:   Toast弹窗其实很简单,在Android Studio ...

  6. python爬虫循环导入MySql数据库

    1.开发环境 操作系统:win10    Python 版本:Python 3.5.2   MySQL:5.5.53 2.用到的模块 没有的话使用pip进行安装:pip install xxx     ...

  7. solr6.6教程-基础环境搭建(二)

    在上一篇文章中已经简单介绍了solr在windows的部署,今天我们来下如何新建一个自己core. 1,core理解 如果把solr理解为个数据库的话,那么core可以理解为数据库中的一张表,其实就是 ...

  8. R语言包的安装

    pheatmap包的安装 1: 首先R语言的安装路径里面最好不要有中文路径 2: 在安装其他依存的scales和colorspace包时候要关闭防火墙 错误提示: 试开URL'https://mirr ...

  9. opencv 3.3.0 如何旋转图像?

    函数介绍 1. void cv::flip(InputArray src,OutputArray dst,int flipCode) 2. void cv::transpose(InputArray ...

  10. FreeImage库如何转换图片格式?

    FreeImage下载地址:http://freeimage.sourceforge.net/ //freeimagemain.h #ifndef FREEIMAGEMAIN_H #define FR ...