题面

题目描述

HH有个一成不变的习惯,喜欢饭后百步走。所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离。 但是同时HH又是个喜欢变化的人,所以他不会立刻沿着刚刚走来的路走回。 又因为HH是个喜欢变化的人,所以他每天走过的路径都不完全一样,他想知道他究竟有多 少种散步的方法。

现在给你学校的地图(假设每条路的长度都是一样的都是1),问长度为t,从给定地 点A走到给定地点B共有多少条符合条件的路径

输入输出格式

输入格式:

第一行:五个整数N,M,t,A,B。其中N表示学校里的路口的个数,M表示学校里的 路的条数,t表示HH想要散步的距离,A表示散步的出发点,而B则表示散步的终点。

接下来M行,每行一组Ai,Bi,表示从路口Ai到路口Bi有一条路。数据保证Ai != Bi,但 不保证任意两个路口之间至多只有一条路相连接。 路口编号从0到N − 1。 同一行内所有数据均由一个空格隔开,行首行尾没有多余空格。没有多余空行。 答案模45989。

输出格式:

一行,表示答案。

输入样例#1:

4 5 3 0 0

0 1

0 2

0 3

2 1

3 2

输出样例#1:

4

说明

对于30%的数据,N ≤ 4,M ≤ 10,t ≤ 10。

对于100%的数据,N ≤ 50,M ≤ 60,t ≤ 2^30,0 ≤ A,B

题解

首先,很容易想到DP

发现DP每一次的转移其实是相同的

因此可以使用矩阵快速幂。

但是,这里不能够直接用邻接矩阵来做快速幂

因为有不能够立刻走反向边的限制。

那么,考虑把原来的点与点之间的转移变成边与边之间的转移

每次可以从一条边走到另外一条边

此时就可以限制回边的问题

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<queue>
#include<vector>
#include<algorithm>
using namespace std;
#define MOD 45989
#define MAX 60
#define MAXL MAX*MAX
inline int read()
{
register int x=0,t=1;
register char ch=getchar();
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-'){t=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-48;ch=getchar();}
return x*t;
}
struct Line
{
int v,next;
}e[MAXL];
int h[MAX],cnt=1;
int N,M,T,A,B,ans=0;
inline void Add(int u,int v)
{
e[++cnt]=(Line){v,h[u]};h[u]=cnt;
}
struct dalao
{
int a[MAX*3][MAX*3];
}pht;
dalao operator *(dalao syc,dalao dsl)
{
dalao gay;memset(gay.a,0,sizeof(gay.a));
for(int i=1;i<=2*M+1;++i)
for(int j=1;j<=2*M+1;++j)
for(int k=1;k<=2*M+1;++k)
gay.a[i][j]=(gay.a[i][j]+syc.a[i][k]*dsl.a[k][j])%MOD;
return gay;
}
dalao Pow(dalao yl,int ball)
{
if(ball==1)return yl;
dalao zsy=Pow(yl,ball>>1);
zsy=zsy*zsy;
if(ball&1)zsy=zsy*yl;
return zsy;
}
int main()
{
N=read();M=read();T=read();A=read()+1;B=read()+1;
for(int i=1;i<=M;++i)
{
int u=read()+1,v=read()+1;
Add(u,v);Add(v,u);
}
for(int i=h[A];i;i=e[i].next)pht.a[1][i]++;
for(int i=2;i<=cnt;++i)
{
for(int j=h[e[i].v];j;j=e[j].next)
{
if(i!=(j^1))
pht.a[i][j]++;
}
}
dalao ycb=Pow(pht,T-1);
pht=pht*ycb;
for(int i=2;i<=cnt;++i)
{
if(e[i].v==B)
(ans+=pht.a[1][i])%=MOD;
}
printf("%d\n",ans);
return 0;
}

【SDOI2009】HH去散步(矩阵快速幂)的更多相关文章

  1. 【BZOJ】1875: [SDOI2009]HH去散步 矩阵快速幂

    [题意]给定n个点m边的无向图,求A到B恰好经过t条边的路径数,路径须满足每条边都和前一条边不同.n<=20,m<=60,t<=2^30. [算法]矩阵快速幂 [题解]将图的邻接矩阵 ...

  2. bzoj1875 [SDOI2009]HH去散步 矩阵快速幂

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=1875 题解 如果没有这个"不能立刻沿着刚刚走来的路走回",那么这个题就是一 ...

  3. [luogu2151 SDOI2009] HH去散步 (矩阵快速幂)

    传送门 题目描述 HH有个一成不变的习惯,喜欢饭后百步走.所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离. 但是同时HH又是个喜欢变化的人,所以他不会立刻沿着刚刚走来的路走回. 又因为HH ...

  4. bzoj1875 [SDOI2009]HH去散步——矩阵快速幂

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1875 有个限制是不能走回头路,比较麻烦: 所以把矩阵中的元素设成边的经过次数,单向边之间就好 ...

  5. 【bzoj1875】【JZYZOJ1354】[SDOI2009]HH去散步 矩阵快速幂 点边转换

    http://172.20.6.3/Problem_Show.asp?id=1354 http://www.lydsy.com/JudgeOnline/problem.php?id=1875  题意: ...

  6. BZOJ 1875 HH去散步(矩阵快速幂)

    题意: 给定一张无向图,每条路的长度都是1,没有自环,可能有重边,给定起点与终点,求从起点走t步到达终点的方案数. 每一步走的时候要求不能走上一条刚刚走的路. 解析: 显然需要搞出个矩阵之后矩乘. 然 ...

  7. bzoj 1875: [SDOI2009]HH去散步 -- 矩阵乘法

    1875: [SDOI2009]HH去散步 Time Limit: 20 Sec  Memory Limit: 64 MB Description HH有个一成不变的习惯,喜欢饭后百步走.所谓百步走, ...

  8. 洛谷P2151 [SDOI2009] HH去散步 [矩阵加速]

    题目传送门 HH去散步 题目描述 HH有个一成不变的习惯,喜欢饭后百步走.所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离. 但是同时HH又是个喜欢变化的人,所以他不会立刻沿着刚刚走来的路走 ...

  9. 【bzoj1875】[SDOI2009]HH去散步 矩阵乘法

    题目描述 一张N个点M条边的无向图,从A走到B,要求:每一次不能立刻沿着上一次的边的反方向返回.求方案数. 输入 第一行:五个整数N,M,t,A,B. N表示学校里的路口的个数 M表示学校里的路的条数 ...

  10. BZOJ1875 [SDOI2009]HH去散步 矩阵

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1875 题意概括 在一个无向图(有重边无自环)中走,不能在经过连续经过某一条边2次. 现在走t步,问 ...

随机推荐

  1. Windows下Nginx的配置及配置文件部分介绍

    一.在官网下载 nginx的Windows版本,官网下载:http://nginx.org/download/ 选择你自己想要的版本下载,解压 nginx(例如nginx-1.6.3) 包到你的win ...

  2. 获取网站证书的两种方法(wireshark or firefox nightly)

    一.使用Wireshark 截取数据包的方式 1. wireshark软件需要使用管理员权限运行,开始捕获后,按下ctrl + f,查找证书所在分组,从source 和destination 栏可以看 ...

  3. 【linux之shell脚本】

    一.简介 机器语言汇编语言高级语言 面向过程 C Shell Perl 面向对象 java python c++ 强语言:先编译再执行 java c++ 弱语言:边编译边执行 shell python ...

  4. vmware安装centos7

    VMware下安装CentOS7.2 http://www.mamicode.com/info-detail-1455647.html centos7.2配置网络 http://blog.csdn.n ...

  5. Linux系统Go开发环境搭建

    Go 语言是由谷歌的科学家开发的,并开源的新语言,被誉为"21世纪的C语言",它的主要目标是将静态语言的安全性和高效性与动态语言的易开发性进行有机结合,达到完美平衡,从而使编程变得 ...

  6. angularjs 服务详解

    一.服务 服务提供了一种能在应用的整改生命周期内保持数据的方法,它能够在控制器之间进行通信,并保持数据的一致性. 1.服务是一个单例对象,在每个应用中只会被实例化一次(被$injector): 2.服 ...

  7. Java经典编程题50道之四十六

    编程实现两个字符串的连接. public class Example46 {    public static void main(String[] args) {        addString( ...

  8. markdown流程图画法小结

    markdown流程图画法小结 markdown 画图 流程图 最简单的流程图为例 ```mermaid!  graph TD  A --> B //在没有(),[].{}等括号的情况之下,图标 ...

  9. C语言_了解一下C语言中的四种存储类别

    C语言是一门通用计算机编程语言,应用广泛.C语言的设计目标是提供一种能以简易的方式编译.处理低级存储器.产生少量的机器码以及不需要任何运行环境支持便能运行的编程语言. C语言中的四种存储类别:auto ...

  10. 浅谈CDN、SEO、XSS、CSRF

    CDN 什么是CDN 初学Web开发的时候,多多少少都会听过这个名词->CDN. CDN在我没接触之前,它给我的印象是用来优化网络请求的,我第一次用到CDN的时候是在找JS文件时.当时找不到相对 ...