机器学习、数据挖掘工作中,数据前期准备、数据预处理过程、特征提取等几个步骤几乎要花费数据工程师一半的工作时间。同时,数据预处理的效果也直接影响了后续模型能否有效的工作。然而,目前的大部分学术研究主要集中在模型的构建、优化等方面,对数据预处理的理论研究甚少,可以说,很多数据预处理工作仍然是靠工程师的经验进行的。从业数据建模/挖掘工作也有近2年的时间,在这里结合谈一谈数据预处理中归一化方法。

在之前的博客中转载了一篇关于维归约的文章:数据预处理之归一化。论述的比较简单,有兴趣的可以先了解一下。

在这里主要讨论两种归一化方法:

1、线性函数归一化(Min-Max scaling)

线性函数将原始数据线性化的方法转换到[0 1]的范围,归一化公式如下:


该方法实现对原始数据的等比例缩放,其中Xnorm为归一化后的数据,X为原始数据,Xmax、Xmin分别为原始数据集的最大值和最小值。

2、0均值标准化(Z-score standardization)

0均值归一化方法将原始数据集归一化为均值为0、方差1的数据集,归一化公式如下:

其中,μ、σ分别为原始数据集的均值和方法。该种归一化方式要求原始数据的分布可以近似为高斯分布,否则归一化的效果会变得很糟糕。

以上为两种比较普通但是常用的归一化技术,那这两种归一化的应用场景是怎么样的呢?什么时候第一种方法比较好、什么时候第二种方法比较好呢?下面做一个简要的分析概括:
1、在分类、聚类算法中,需要使用距离来度量相似性的时候、或者使用PCA技术进行降维的时候,第二种方法(Z-score
standardization)表现更好。
2、在不涉及距离度量、协方差计算、数据不符合正太分布的时候,可以使用第一种方法或其他归一化方法。比如图像处理中,将RGB图像转换为灰度图像后将其值限定在[0
255]的范围。

为什么在距离度量计算相似性、PCA中使用第二种方法(Z-score
standardization)会更好呢?我们进行了以下的推导分析:

归一化方法对方差、协方差的影响:假设数据为2个维度(X、Y),首先看0均值对方差、协方差的影响:
先使用第二种方法进行计算,我们先不做方差归一化,只做0均值化,变换后数据为


新数据的协方差为

由于 

因此

而原始数据协方差为

因此 

做方差归一化后:


方差归一化后的协方差为:

使用第一种方法进行计算,为方便分析,我们只对X维进行线性函数变换

计算协方差


可以看到,使用第一种方法(线性变换后),其协方差产生了倍数值的缩放,因此这种方式无法消除量纲对方差、协方差的影响,对PCA分析影响巨大;同时,由于量纲的存在,使用不同的量纲、距离的计算结果会不同。
而在第二种归一化方式中,新的数据由于对方差进行了归一化,这时候每个维度的量纲其实已经等价了,每个维度都服从均值为0、方差1的正态分布,在计算距离的时候,每个维度都是去量纲化的,避免了不同量纲的选取对距离计算产生的巨大影响。

总结来说,在算法、后续计算中涉及距离度量(聚类分析)或者协方差分析(PCA、LDA等)的,同时数据分布可以近似为状态分布,应当使用0均值的归一化方法。其他应用中更具需要选用合适的归一化方法。



再谈机器学习中的归一化方法(Normalization Method)的更多相关文章

  1. 归一化方法 Normalization Method

    1. 概要 数据预处理在众多深度学习算法中都起着重要作用,实际情况中,将数据做归一化和白化处理后,很多算法能够发挥最佳效果.然而除非对这些算法有丰富的使用经验,否则预处理的精确参数并非显而易见. 2. ...

  2. 机器学习中的标准化方法(Normalization Methods)

    希望这篇随笔能够从一个实用化的角度对ML中的标准化方法进行一个描述.即便是了解了标准化方法的意义,最终的最终还是要:拿来主义,能够在实践中使用. 动机:标准化的意义是什么? 我们为什么要标准化?想象我 ...

  3. Unity教程之再谈Unity中的优化技术

    这是从 Unity教程之再谈Unity中的优化技术 这篇文章里提取出来的一部分,这篇文章让我学到了挺多可能我应该知道却还没知道的知识,写的挺好的 优化几何体   这一步主要是为了针对性能瓶颈中的”顶点 ...

  4. 【转】浅谈Java中的hashcode方法(这个demo可以多看看)

    浅谈Java中的hashcode方法 哈希表这个数据结构想必大多数人都不陌生,而且在很多地方都会利用到hash表来提高查找效率.在Java的Object类中有一个方法: public native i ...

  5. 【转】浅谈Java中的hashcode方法

    哈希表这个数据结构想必大多数人都不陌生,而且在很多地方都会利用到hash表来提高查找效率.在Java的Object类中有一个方法: public native int hashCode(); 根据这个 ...

  6. 浅谈Java中的hashcode方法(转)

    原文链接:http://www.cnblogs.com/dolphin0520/p/3681042.html 浅谈Java中的hashcode方法 哈希表这个数据结构想必大多数人都不陌生,而且在很多地 ...

  7. 机器学习(十三)——机器学习中的矩阵方法(3)病态矩阵、协同过滤的ALS算法(1)

    http://antkillerfarm.github.io/ 向量的范数(续) 范数可用符号∥x∥λ表示. 经常使用的有: ∥x∥1=|x1|+⋯+|xn| ∥x∥2=x21+⋯+x2n−−−−−− ...

  8. 浅谈Java中的hashcode方法

    哈希表这个数据结构想必大多数人都不陌生,而且在很多地方都会利用到hash表来提高查找效率.在Java的Object类中有一个方法: 1 public native int hashCode(); 根据 ...

  9. 浅谈Java中的hashcode方法(转载)

    哈希表这个数据结构想必大多数人都不陌生,而且在很多地方都会利用到hash表来提高查找效率.在Java的Object类中有一个方法: 1 public native int hashCode(); 根据 ...

随机推荐

  1. CentOS7 下安装 Java 8 [wget]

    1. 创建一个文件夹 sudo mkdir /usr/local/services/java8 2. 使用 wget 来下载 wget --no-cookies --no-check-certific ...

  2. a标签href无值 onclick事件跳转

    <a href='#'  onclick='gomore()'>更多>></a>  单击无反应 <a href='javascript:void(0)'  o ...

  3. Tomcat的安装与配置

    Windows安装Tomcat与启动 安装版安装 安装版长这个样子,下载到电脑上后双击开始安装 双击后出现如下页面,点击 Next> 之后是这个页面,点击 I Agree 之后出现如下页面,点击 ...

  4. jdk1.7和jdk1.8区别

    转自:http://www.2cto.com/kf/201307/225968.html 本文是我学习了解了jdk7和jdk8的一些新特性的一些资料,有兴趣的大家可以浏览下下面的内容. 官方文档:ht ...

  5. JNI 方法注册与签名+BufferedReader使用readLine问题

    最近了解了关于JavaJNI接口的一些关于方法注册与签名相关的知识,在此进行一下总结. 使用JNI接口时,我们首先需要把Java方法声明为native: public native void f(); ...

  6. web性能优化之---JavaScript中的无阻塞加载性能优化方案

    一.js阻塞特性 JS 有个很无语的阻塞特性,就是当浏览器在执行JS 代码时,不能同时做其他任何事情,无论其代码是内嵌的还是外部的. 即<script>每次出现都会让页面等待脚本的解析和执 ...

  7. Lintcode391 Number of Airplanes in the Sky solution 题解

    [题目描述] Given an interval list which are flying and landing time of the flight. How many airplanes ar ...

  8. HashSet<T>的妙用

    HashSet<int> hs = new HashSet<int>(); var ret = hs.Add(1);  //ret==true var ret2 = hs.Ad ...

  9. Struts2 转换器

    转换器 从一个 HTML 表单到一个 Action 对象,类型转换是从字符串到非字符串 Http 没有 "类型" 的概念,每一项表单的输入只可能是一个字符串或一个字符串数组,在服务 ...

  10. Bootstrap3 表单-被支持的控件:文本域

    支持多行文本的表单控件.可根据需要改变 rows 属性. <textarea class="form-control" rows="3"></ ...