combination sum、permutation、subset(组合和、全排列、子集)
combination sum I、permutation I、subsets I 是组合和、全排列、子集的第一种情况,给定数组中没有重复的元素。
combination sum II、permutation II、subsets II 是组合和、全排列、子集的第而种情况,给定数组中有重复元素。
combination sum I中元素每个可以被多次使用,所以每次遍历都是从当前元素开始,然后往后面遍历。
combination sum II中元素只能被使用一次,所以算下个元素时,只能从当前元素后面的元素查找。
全排列每次都要从头开始遍历,既然从头遍历,就要考虑前面元素是否使用过。对于permutation I,每次从头遍历只要判断当前元素是否使用过,这个可以使用list.contains判断,也可以使用combination sum II而中的数组来表示是否使用过。因为全排列每次从头遍历,而且添加时不能添加那些已经在集合中的元素(使用过的),所以用一个数组。而从当前元素下一个开始遍历的情况(求子集),则不需要考虑前面的元素,只考虑后面的,而后面的元素都是没有使用过的,所以不需要再判断是否使用过,只需要考虑跳过重复元素就行。
求子集是每次要从当前元素后面的元素添加,也就是遍历当前元素后面的元素。subsets I不需要判断是否重复,也不需要排序。判断条件只是list中元素个数小于nums长度即可,也就是是集合之一,但是判断完了不返回,因为还有继续添加。subsets II则要排序,还有去除重复元素,这里跳过重复元素并不需要额外数组,因为不是从头开始,只要跳过相同的即可。
注意这几个处理重复的方法:全排列是用到所有元素,每次从头遍历,所以它处理重复的方法就是使用一个数组标记是否使用过该元素。子集和组合不是从头开始遍历,每次只遍历后面的元素,它的处理方式就是直接用if跳过相同元素。
代码:
combination sum I
class Solution {
public List<List<Integer>> combinationSum(int[] nums, int target) {
/**
这个题是穷举所有情况,回溯的可能性比较大
*/
Arrays.sort(nums);
List<List<Integer>> result=new ArrayList<List<Integer>>();
backtracking(result,new ArrayList<Integer>(),nums,target,0,0);
return result;
} public void backtracking(List<List<Integer>> result,List<Integer> tmp,int[] nums,int target,int sum,int index){
if(sum>target) return ;
if(sum==target) {
result.add(new ArrayList<Integer>(tmp));
return ;
} if(index>nums.length-1) return ; for(int i=index;i<nums.length;i++){
tmp.add(nums[i]);
backtracking(result,tmp,nums,target,sum+nums[i],i);
tmp.remove(tmp.size()-1);
}
}
}
combination sum II
class Solution {
public List<List<Integer>> combinationSum2(int[] candidates, int target) {
List<List<Integer>> result=new ArrayList<List<Integer>>();
if(candidates==null||candidates.length==0) return result;
Arrays.sort(candidates);
backtracking(result,new ArrayList<Integer>(),candidates,target,0,0);
return result;
} public void backtracking(List<List<Integer>> result,List<Integer> list,int[] nums,int target,int sum,int index){
if(sum>target) return ;
if(sum==target){
result.add(new ArrayList<Integer>(list));
return ;
}
if(index>nums.length-1) return ;
/*
这一题相比combination sum I,做了两点修改,1、数组中每个元素只能被使用一次;2、数组中有重复元素。针对1,每次添加list从下一个元素开始(i+1);针对2,每次遍历的时候,跳过重复的元素。
*/
for(int i=index;i<nums.length;i++){
//每次遍历时,跳过重复元素,这样就不会出现重复的两个list
if(i>index&&nums[i]==nums[i-1]) continue;
list.add(nums[i]);
backtracking(result,list,nums,target,sum+nums[i],i+1);
list.remove(list.size()-1);
}
}
}
permination I
class Solution {
public List<List<Integer>> permute(int[] nums) {
List<List<Integer>> result = new ArrayList<List<Integer>>();
if(nums.length<=0) return result;
backtracking(result,new ArrayList<Integer>(),nums);
return result;
} public void backtracking(List<List<Integer>> result, List<Integer> list,int[] nums){
if(list.size()==nums.length){
result.add(new ArrayList<Integer>(list));
return ;
} for(int i=0;i<nums.length;i++){
if(list.contains(nums[i])) continue;//每次都是遍历数组中的每个元素,然后添加不一样的元素(保证不重复)
list.add(nums[i]); backtracking(result,list,nums);
list.remove(list.size()-1); }
}
}
permination II
class Solution {
public List<List<Integer>> permuteUnique(int[] nums) {
List<List<Integer>> res=new ArrayList<List<Integer>>();
if(nums==null||nums.length==0) return res;
//该数组用来标记每个位置的元素是否使用以保证每个位置的元素只能使用一次。控制递归遍历(往list后面添加元素)中该元素是否已经使用。
boolean[] used=new boolean[nums.length];
Arrays.sort(nums);
List<Integer> list=new ArrayList<>();
helper(nums,res,list,used);
return res;
} public void helper(int[] nums,List<List<Integer>> res,List<Integer> list,boolean[] used){
if(nums.length==list.size()){
res.add(new ArrayList<Integer>(list));
return ;
}
for(int i=0;i<nums.length;i++){
if(used[i]) continue; //该元素使用过了。
//下一个重复值只有在前一个重复值被使用的情况下才可以使用。
/*
这个!used[i-1]条件是为深度遍历准备的。
对于当前层遍历时,每遍历一个元素结束后就会设为false然后遍历下一个,所以可以跳过重复元素,避免相同元素出现在同一个位置。
对于深度遍历(递归,往结果集中继续添加元素),需要使用!used[i-1]来保证后面的相同元素可以往后面的结果集中添加。
比如[1,1,2].第一层遍历第一个1时,设为true后,递归往后面添加第二个元素,此时也是从第一个元素开始遍历,
因为此时used[0]为true,所以跳过,i=1,此时如果没有!used[i-1],也会跳过第二个1了,所以需要加上这个条件。
*/ if(i>0&&nums[i]==nums[i-1]&&!used[i-1]) continue;
used[i]=true;
list.add(nums[i]);
helper(nums,res,list,used);
//下面这两步,为了同层遍历,同层遍历是给一个位置轮流添加元素。所以需要将上一个添加的元素删了,然后删除标记,遍历下一个元素
used[i]=false;
list.remove(list.size()-1);
}
}
}
subsets I
class Solution {
public List<List<Integer>> subsets(int[] nums) {
List<List<Integer>> res=new ArrayList<List<Integer>>();
if(nums==null||nums.length==0) return res;
helper(res,new ArrayList<Integer>(),nums,0);
return res;
} public void helper(List<List<Integer>> res,List<Integer> list,int[] nums,int index){
if(list.size()<=nums.length){
res.add(new ArrayList<Integer>(list));
}
for(int i=index;i<nums.length;i++){
list.add(nums[i]);
helper(res,list,nums,i+1);
list.remove(list.size()-1);
}
}
}
subsets II
class Solution {
public List<List<Integer>> subsetsWithDup(int[] nums) {
List<List<Integer>> res=new ArrayList<List<Integer>>();
if(nums==null||nums.length==0) return res;
Arrays.sort(nums); //有相同元素,所以要排序
helper(res,new ArrayList<Integer>(),nums,0);
return res;
}
public void helper(List<List<Integer>> res,List<Integer> list,int[] nums,int index){
//求子集,所以判断条件为.而且满足条件后还要继续向下进行,而不是返回
if(list.size()<=nums.length)
res.add(new ArrayList<Integer>(list));
for(int i=index;i<nums.length;i++){
//跳过相同的元素。因为是从后面的元素中选元素,不是从头开始,所以不需要再创建是否使用的数组了。注意:下面是i>index,而不是i>0.
if(i>index&&nums[i]==nums[i-1]) continue;
list.add(nums[i]);
helper(res,list,nums,i+1);
list.remove(list.size()-1);
}
}
}
combination sum、permutation、subset(组合和、全排列、子集)的更多相关文章
- 【LeetCode每天一题】Combination Sum II(组合和II)
Given a collection of candidate numbers (candidates) and a target number (target), find all unique c ...
- 子集系列(二) 满足特定要求的子集,例 [LeetCode] Combination, Combination Sum I, II
引言 既上一篇 子集系列(一) 后,这里我们接着讨论带有附加条件的子集求解方法. 这类题目也是求子集,只不过不是返回所有的自己,而往往是要求返回满足一定要求的子集. 解这种类型的题目,其思路可以在上一 ...
- [Leetcode 40]组合数和II Combination Sum II
[题目] Given a collection of candidate numbers (candidates) and a target number (target), find all uni ...
- [Leetcode 39]组合数的和Combination Sum
[题目] Given a set of candidate numbers (candidates) (without duplicates) and a target number (target) ...
- [Leetcode 216]求给定和的数集合 Combination Sum III
[题目] Find all possible combinations of k numbers that add up to a number n, given that only numbers ...
- 【LeetCode练习题】Combination Sum
Combination Sum Given a set of candidate numbers (C) and a target number (T), find all unique combin ...
- LeetCode题解39.Combination Sum
39. Combination Sum Given a set of candidate numbers (C) (without duplicates) and a target number (T ...
- leetcode 39. Combination Sum 、40. Combination Sum II 、216. Combination Sum III
39. Combination Sum 依旧与subsets问题相似,每次选择这个数是否参加到求和中 因为是可以重复的,所以每次递归还是在i上,如果不能重复,就可以变成i+1 class Soluti ...
- 【LeetCode】40. Combination Sum II (2 solutions)
Combination Sum II Given a collection of candidate numbers (C) and a target number (T), find all uni ...
随机推荐
- iOS中 简单易懂的秒杀倒计时/倒计时
示例代码简单易懂: 每日更新关注:http://weibo.com/hanjunqiang 新浪微博 #import <UIKit/UIKit.h> @interface ViewCon ...
- Java进阶(三十三)java基础-filter
java基础-filter 我们先看看没有filter的时候,整个web客户端-服务端的一个流程. 接下来我们再看看引入了filter之后的Uml图.尝试分析这两者之间的差别. filter从哪里来? ...
- LocalBroadcastManager—创建更高效、更安全的广播
前言 在写Android应用时候,有时候或多或少的需要运用广播来解决某些需求,我们知道广播有一个特性,就是使用sendBroadcast(intent);发送广播时,手机内所有注册了Broadcast ...
- UNIX环境高级编程——进程关系
一.终端的概念 在UNIX系统中,用户通过终端登录系统后得到一个Shell进程,这个终端成为Shell进程的控制终端(Controlling Terminal),控制终端是保存在PCB中的信息,而我们 ...
- flume1.4.0 保存文件到hdfs错误调试
报错如下 解决方案:将FLUME_HOME/lib目录下的jar文件,替换成HADOOP_HOME/share/hadoop/common/lib下版本更新的jar文件
- Java JDBC封装模式
模仿DBUtils里面的一些用法,下面是一些简单的实现数据集的操作的方法 下面使用到的两个bean.首先是userbean package bean; public class user { Stri ...
- TCP的ACK确认系列 — 延迟确认
主要内容:TCP的延迟确认.延迟确认定时器的实现. 内核版本:3.15.2 我的博客:http://blog.csdn.net/zhangskd 延迟确认模式 发送方在发送数据包时,如果发送的数据包有 ...
- python安装json的方法;以及三种json库的区别
python中的json解释库有好几个,不同版本使用方法不同. 常用有 json-py 与smiplejson 两个包 其中,json-py 包含json.py外,还有一个minjson,两者用法上有 ...
- 【Android 应用开发】Activity 状态保存 OnSaveInstanceState参数解析
作者 : 韩曙亮 转载请著名出处 : http://blog.csdn.net/shulianghan/article/details/38297083 一. 相关方法简介 1. 状态保存方法示例 p ...
- Zookeeper实现master选举
使用场景 有一个向外提供的服务,服务必须7*24小时提供服务,不能有单点故障.所以采用集群的方式,采用master.slave的结构.一台主机多台备机.主机向外提供服务,备机负责监听主 ...