combination sum Ipermutation Isubsets  I 是组合和、全排列、子集的第一种情况,给定数组中没有重复的元素。

combination sum IIpermutation IIsubsets  II 是组合和、全排列、子集的第而种情况,给定数组中有重复元素。

combination sum I中元素每个可以被多次使用,所以每次遍历都是从当前元素开始,然后往后面遍历。

combination sum II中元素只能被使用一次,所以算下个元素时,只能从当前元素后面的元素查找。

全排列每次都要从头开始遍历,既然从头遍历,就要考虑前面元素是否使用过。对于permutation I,每次从头遍历只要判断当前元素是否使用过,这个可以使用list.contains判断,也可以使用combination sum II而中的数组来表示是否使用过。因为全排列每次从头遍历,而且添加时不能添加那些已经在集合中的元素(使用过的),所以用一个数组。而从当前元素下一个开始遍历的情况(求子集),则不需要考虑前面的元素,只考虑后面的,而后面的元素都是没有使用过的,所以不需要再判断是否使用过,只需要考虑跳过重复元素就行。

求子集是每次要从当前元素后面的元素添加,也就是遍历当前元素后面的元素。subsets  I不需要判断是否重复,也不需要排序。判断条件只是list中元素个数小于nums长度即可,也就是是集合之一,但是判断完了不返回,因为还有继续添加。subsets  II则要排序,还有去除重复元素,这里跳过重复元素并不需要额外数组,因为不是从头开始,只要跳过相同的即可。

注意这几个处理重复的方法:全排列是用到所有元素,每次从头遍历,所以它处理重复的方法就是使用一个数组标记是否使用过该元素。子集和组合不是从头开始遍历,每次只遍历后面的元素,它的处理方式就是直接用if跳过相同元素。

代码:

combination sum I

class Solution {
public List<List<Integer>> combinationSum(int[] nums, int target) {
/**
这个题是穷举所有情况,回溯的可能性比较大
*/
Arrays.sort(nums);
List<List<Integer>> result=new ArrayList<List<Integer>>();
backtracking(result,new ArrayList<Integer>(),nums,target,0,0);
return result;
} public void backtracking(List<List<Integer>> result,List<Integer> tmp,int[] nums,int target,int sum,int index){
if(sum>target) return ;
if(sum==target) {
result.add(new ArrayList<Integer>(tmp));
return ;
} if(index>nums.length-1) return ; for(int i=index;i<nums.length;i++){
tmp.add(nums[i]);
backtracking(result,tmp,nums,target,sum+nums[i],i);
tmp.remove(tmp.size()-1);
}
}
}

combination sum II

class Solution {
public List<List<Integer>> combinationSum2(int[] candidates, int target) {
List<List<Integer>> result=new ArrayList<List<Integer>>();
if(candidates==null||candidates.length==0) return result;
Arrays.sort(candidates);
backtracking(result,new ArrayList<Integer>(),candidates,target,0,0);
return result;
} public void backtracking(List<List<Integer>> result,List<Integer> list,int[] nums,int target,int sum,int index){
if(sum>target) return ;
if(sum==target){
result.add(new ArrayList<Integer>(list));
return ;
}
if(index>nums.length-1) return ;
/*
这一题相比combination sum I,做了两点修改,1、数组中每个元素只能被使用一次;2、数组中有重复元素。针对1,每次添加list从下一个元素开始(i+1);针对2,每次遍历的时候,跳过重复的元素。
*/
for(int i=index;i<nums.length;i++){
//每次遍历时,跳过重复元素,这样就不会出现重复的两个list
if(i>index&&nums[i]==nums[i-1]) continue;
list.add(nums[i]);
backtracking(result,list,nums,target,sum+nums[i],i+1);
list.remove(list.size()-1);
}
}
}

permination I

class Solution {
public List<List<Integer>> permute(int[] nums) {
List<List<Integer>> result = new ArrayList<List<Integer>>();
if(nums.length<=0) return result;
backtracking(result,new ArrayList<Integer>(),nums);
return result;
} public void backtracking(List<List<Integer>> result, List<Integer> list,int[] nums){
if(list.size()==nums.length){
result.add(new ArrayList<Integer>(list));
return ;
} for(int i=0;i<nums.length;i++){
if(list.contains(nums[i])) continue;//每次都是遍历数组中的每个元素,然后添加不一样的元素(保证不重复)
list.add(nums[i]); backtracking(result,list,nums);
list.remove(list.size()-1); }
}
}

permination II

class Solution {
public List<List<Integer>> permuteUnique(int[] nums) {
List<List<Integer>> res=new ArrayList<List<Integer>>();
if(nums==null||nums.length==0) return res;
//该数组用来标记每个位置的元素是否使用以保证每个位置的元素只能使用一次。控制递归遍历(往list后面添加元素)中该元素是否已经使用。
boolean[] used=new boolean[nums.length];
Arrays.sort(nums);
List<Integer> list=new ArrayList<>();
helper(nums,res,list,used);
return res;
} public void helper(int[] nums,List<List<Integer>> res,List<Integer> list,boolean[] used){
if(nums.length==list.size()){
res.add(new ArrayList<Integer>(list));
return ;
}
for(int i=0;i<nums.length;i++){
if(used[i]) continue; //该元素使用过了。
//下一个重复值只有在前一个重复值被使用的情况下才可以使用。
/*
    这个!used[i-1]条件是为深度遍历准备的。
对于当前层遍历时,每遍历一个元素结束后就会设为false然后遍历下一个,所以可以跳过重复元素,避免相同元素出现在同一个位置。
对于深度遍历(递归,往结果集中继续添加元素),需要使用!used[i-1]来保证后面的相同元素可以往后面的结果集中添加。
      比如[1,1,2].第一层遍历第一个1时,设为true后,递归往后面添加第二个元素,此时也是从第一个元素开始遍历,
      因为此时used[0]为true,所以跳过,i=1,此时如果没有!used[i-1],也会跳过第二个1了,所以需要加上这个条件。
      
      */ if(i>0&&nums[i]==nums[i-1]&&!used[i-1]) continue;
used[i]=true;
list.add(nums[i]);
helper(nums,res,list,used);
//下面这两步,为了同层遍历,同层遍历是给一个位置轮流添加元素。所以需要将上一个添加的元素删了,然后删除标记,遍历下一个元素
used[i]=false;
list.remove(list.size()-1);
}
}
}

subsets I

class Solution {
public List<List<Integer>> subsets(int[] nums) {
List<List<Integer>> res=new ArrayList<List<Integer>>();
if(nums==null||nums.length==0) return res;
helper(res,new ArrayList<Integer>(),nums,0);
return res;
} public void helper(List<List<Integer>> res,List<Integer> list,int[] nums,int index){
if(list.size()<=nums.length){
res.add(new ArrayList<Integer>(list));
}
for(int i=index;i<nums.length;i++){
list.add(nums[i]);
helper(res,list,nums,i+1);
list.remove(list.size()-1);
}
}
}

subsets II

class Solution {
public List<List<Integer>> subsetsWithDup(int[] nums) {
List<List<Integer>> res=new ArrayList<List<Integer>>();
if(nums==null||nums.length==0) return res;
Arrays.sort(nums); //有相同元素,所以要排序
helper(res,new ArrayList<Integer>(),nums,0);
return res;
}
public void helper(List<List<Integer>> res,List<Integer> list,int[] nums,int index){
//求子集,所以判断条件为.而且满足条件后还要继续向下进行,而不是返回
if(list.size()<=nums.length)
res.add(new ArrayList<Integer>(list));
for(int i=index;i<nums.length;i++){
//跳过相同的元素。因为是从后面的元素中选元素,不是从头开始,所以不需要再创建是否使用的数组了。注意:下面是i>index,而不是i>0.
if(i>index&&nums[i]==nums[i-1]) continue;
list.add(nums[i]);
helper(res,list,nums,i+1);
list.remove(list.size()-1);
}
}
}

combination sum、permutation、subset(组合和、全排列、子集)的更多相关文章

  1. 【LeetCode每天一题】Combination Sum II(组合和II)

    Given a collection of candidate numbers (candidates) and a target number (target), find all unique c ...

  2. 子集系列(二) 满足特定要求的子集,例 [LeetCode] Combination, Combination Sum I, II

    引言 既上一篇 子集系列(一) 后,这里我们接着讨论带有附加条件的子集求解方法. 这类题目也是求子集,只不过不是返回所有的自己,而往往是要求返回满足一定要求的子集. 解这种类型的题目,其思路可以在上一 ...

  3. [Leetcode 40]组合数和II Combination Sum II

    [题目] Given a collection of candidate numbers (candidates) and a target number (target), find all uni ...

  4. [Leetcode 39]组合数的和Combination Sum

    [题目] Given a set of candidate numbers (candidates) (without duplicates) and a target number (target) ...

  5. [Leetcode 216]求给定和的数集合 Combination Sum III

    [题目] Find all possible combinations of k numbers that add up to a number n, given that only numbers ...

  6. 【LeetCode练习题】Combination Sum

    Combination Sum Given a set of candidate numbers (C) and a target number (T), find all unique combin ...

  7. LeetCode题解39.Combination Sum

    39. Combination Sum Given a set of candidate numbers (C) (without duplicates) and a target number (T ...

  8. leetcode 39. Combination Sum 、40. Combination Sum II 、216. Combination Sum III

    39. Combination Sum 依旧与subsets问题相似,每次选择这个数是否参加到求和中 因为是可以重复的,所以每次递归还是在i上,如果不能重复,就可以变成i+1 class Soluti ...

  9. 【LeetCode】40. Combination Sum II (2 solutions)

    Combination Sum II Given a collection of candidate numbers (C) and a target number (T), find all uni ...

随机推荐

  1. 07 总结ProgressDialog 异步任务

    1,ProgressDialog     >        //使用对象  设置标题             progressDialog.setTitle("标题");   ...

  2. Android开发学习之路--Activity之四种启动模式

    后天终于可以回家了,马上就要过年了,趁着年底打酱油的模式,就多学习学习,然后记录记录吧.关于Activity已经学习了七七八八了,还有就是Activity的四种启动模式了,它们分别为,standard ...

  3. 【一天一道LeetCode】#141. Linked List Cycle

    一天一道LeetCode 本系列文章已全部上传至我的github,地址:ZeeCoder's Github 欢迎大家关注我的新浪微博,我的新浪微博 欢迎转载,转载请注明出处 (一)题目 Given a ...

  4. Ubuntu中firefox设置成中文

    进入 http://ftp.mozilla.org/pub/mozilla.org/firefox/nightly 按版本选择下去,帮助(help)-->关于,查看浏览器的版本号 所以,目录是3 ...

  5. Libgdx1.6.2发布,跨平台游戏开发框架

    原文地址:www.libgdx.cn [1.6.2] API更改:TiledMapImageLayer位置由整型改为浮点类型. API更改:添加GLFrameBuffer 和 FrameBufferC ...

  6. UI设计切忌墨守成规,但改变也须用数据说话

    因为我提倡一种非标准的方法,Jon Galloway在一段评论里点了我的名: 年,他们很清楚怎么去填写这些表单.如果采用其他方法,用户会感到困惑,有些人还会落荒而逃(丢掉购物车,等等).Web表单很有 ...

  7. Java中Set的contains()方法

    Java中Set的contains()方法 -- hashCode与equals方法的约定及重写原则 翻译人员: 铁锚 翻译时间: 2013年11月5日 原文链接: Java hashCode() a ...

  8. 学习pthreads,给线程传递多个参数

    上篇博文中,boss线程给其他线程传递的只有一个参数,那么假如是多个参数呢?怎么传递呢?或许你会有这样的疑问,带着这个疑问,我们进入本文的世界,这里传递多个参数,采用结构体,为什么呢?因为结构体里可以 ...

  9. Ubuntu下编译SHTOOLS

    SHTOOLS是使用Fortran语言写的一个专门用于处理球谐函数的一个开源库,更多的介绍请猛戳这里,关于这个库的安装和使用,都在官网上有详细的说明,虽然很详细,但是编译的时候还是比较费劲,下面将我在 ...

  10. volley请求原理

    Volley 实现原理解析 本文为 Android 开源项目实现原理解析 中 Volley 部分 项目地址:Volley,分析的版本:35ce778,Demo 地址:Volley Demo 分析者:g ...