【BZOJ 3561】 DZY Loves Math VI
题目:

题解:
水题有益身心健康。(博客园的辣鸡数学公式)
其实到这我想强上伯努利数,然后发现$n^2$的伯努利数,emmmmmm
发现这个式子可以算时间复杂度,emmmmm。积了个分发现时间复杂度很优秀啊(大概也就是$nlog$级别的)。
所以直接算就好了。
P.S.想卡卡常刷一个题榜rank1,emmmm发现自己没这个天赋。
代码:
#define Troy #include "bits/stdc++.h" using namespace std; const int mod=,N=5e5+; inline int powmod(int a,int b){
int ret=;
while(b){
if(b&) ret=ret*1ll*a%mod;
b>>=;
a=a*1ll*a%mod;
}return ret;
} int prim[N],num,mu[N],vis[N],sum[N],ans,f[N]; inline int calc(int n,int m,int t){
register int i,j;
int ret=;
for (i=;i<=m;++i){
f[i]=f[i]*1ll*i%mod;
vis[i]=mu[i]*(f[i]*1ll*f[i]%mod);
vis[i]+=vis[i-];
vis[i]%=mod;
sum[i]=sum[i-]+f[i];
sum[i]%=mod;
}
for (i=;i<=n;i=j+){
j=min(n/(n/i),m/(m/i));
ret=(ret+(vis[j]-vis[i-])*1ll*sum[n/i]%mod*sum[m/i])%mod;
}
return ret;
} int main(){
int n,m;
scanf("%d%d",&n,&m);
if(n>m) swap(n,m);
register int i,j;
for(i=,mu[]=;i<=n;++i){
if(!vis[i]) {
mu[i]=-,prim[++num]=i;
}for(j=;prim[j]*i<=n;++j){
vis[i*prim[j]]=true;
if(i%prim[j]==) {
mu[i*prim[j]]=;break;
}mu[i*prim[j]]=-mu[i];
}
}
for(i=;i<=m;++i) f[i]=;
for(i=;i<=n;++i){
ans=(ans+powmod(i,i)*1ll*calc(n/i,m/i,i))%mod;
}
printf("%d\n",ans);
}
【BZOJ 3561】 DZY Loves Math VI的更多相关文章
- 【bzoj 3309 】 DZY Loves Math
Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007)=1, f(1)=0.给定正整数a,b,求 ...
- 【BZOJ 3309】DZY Loves Math
http://www.lydsy.com/JudgeOnline/problem.php?id=3309 \[\sum_{T=1}^{min(a,b)}\sum_{d|T}f(d)\mu(\frac ...
- 【BZOJ3561】DZY Loves Math VI (数论)
[BZOJ3561]DZY Loves Math VI (数论) 题面 BZOJ 题解 \[\begin{aligned} ans&=\sum_{i=1}^n\sum_{j=1}^m\sum_ ...
- 【bzoj3561】DZY Loves Math VI 莫比乌斯反演
题目描述 给定正整数n,m.求 输入 一行两个整数n,m. 输出 一个整数,为答案模1000000007后的值. 样例输入 5 4 样例输出 424 题解 莫比乌斯反演 (为了方便,以下公式默认$ ...
- 【BZOJ 3569】DZY Loves Chinese II 随机化+线性基
用到一个结论——[先建树,再给每个非树边一个权值,每个树边的权值为覆盖他的非树边的权值的异或和,然后如果给出的边存在一个非空子集异或和为0则不连通,否则连通](必须保证每条边的出现和消失只能由自己产生 ...
- 【BZOJ 3569】DZY Loves Chinese II
题面 Description 神校XJ之学霸兮,Dzy皇考曰JC. 摄提贞于孟陬兮,惟庚寅Dzy以降. 纷Dzy既有此内美兮,又重之以修能. 遂降临于OI界,欲以神力而凌♂辱众生. 今Dzy有一魞歄图 ...
- 【BZOJ 3569】 DZY Loves Chinese II
题目连接: 传送门 题解: 先%一发大佬的题解. 考虑一个图,删除一些边以后不连通的条件为,某个联通块与外界所有连边都被删掉,而不只是生成树中一个树边与所以覆盖它的非树边(很容易举出反例). 那么考虑 ...
- 【BZOJ 3561】 3561: DZY Loves Math VI (莫比乌斯,均摊log)
3561: DZY Loves Math VI Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 205 Solved: 141 Description ...
- BZOJ 3561 DZY Loves Math VI
BZOJ 3561 DZY Loves Math VI 求\(\sum_{i=1}^{n}\sum_{j=1}^{m}\text{lcm}(i,j)^{\gcd(i,j)}\),钦定\(n\leq m ...
随机推荐
- Implement int sqrt(int x).
自己设计函数,实现求根号.x是非负整数. Input: 8 Output: 2 当开出根号后有小数,则省略小数部分.. 思路:只要找到一个数a,a*a<=x而且(a+1)*(a+1)>x, ...
- JavaScript脚本放在哪里
在HTML body部分中的JavaScripts会在页面加载的时候被执行. 在HTML head部分中的JavaScripts会在被调用的时候才执行. ----------------------- ...
- geth常用指令
ubuntu下载: https://github.com/ethereum/go-ethereum/wiki/Installation-Instructions-for-Ubuntu sudo apt ...
- Web安全工具大汇聚
http://www.owasp.org/index.PHP/Phoenix/Tools http://sebug.net/paper/other/Web安全工具大汇聚.txt =========== ...
- 第一次作业 orm环境构建(hibernate)及基本的demo
一.数据库 1.创建数据库hibernate01-1514010311 2.创建表 customer CREATE TABLE customer( id int(11) not null auto_i ...
- C#避免踩坑之如何添加paint事件
看截图: 首先,右击->属性 然后出来这个界面. 接下来,注意看这个界面的上面:鼠标悬停这个闪电符号,看到没,事件!! 那个闪电符号,点它! 然后下拉找到这个: 你要事先在代码里面添加Form1 ...
- MariaDB/MySQL备份和恢复(一):mysqldump工具用法详述
本文目录:1.备份分类2.备份内容和备份工具3.mysqldump用法详述 3.1 语法选项 3.1.1 连接选项 3.1.2 筛选选项 3.1.3 DDL选项 3.1.4 字符集选项 3.1.5 复 ...
- 专业、稳定的微信域名被封检测API平台!
裂变程序最佳配套api,实时检测域名在微信中是否被封,防止见红 还在手动测试域名在微信是否可用?你OUT了! API文档:最简单的GET接口调用方式 API响应:毫秒级响应效率,100%准确率 AP ...
- python笔记:#011#循环
循环 目标 程序的三大流程 while 循环基本使用 break 和 continue while 循环嵌套 01. 程序的三大流程 在程序开发中,一共有三种流程方式: 顺序 -- 从上向下,顺序执行 ...
- DevOps之三 Git的安装与配置
Centos7 安装Git 一.卸载Centos7 自带的git # git --version git version 1.8.3.1# whereis gitgit: /usr/bin/git / ...