【BZOJ 3561】 DZY Loves Math VI
题目:
题解:
水题有益身心健康。(博客园的辣鸡数学公式)
其实到这我想强上伯努利数,然后发现$n^2$的伯努利数,emmmmmm
发现这个式子可以算时间复杂度,emmmmm。积了个分发现时间复杂度很优秀啊(大概也就是$nlog$级别的)。
所以直接算就好了。
P.S.想卡卡常刷一个题榜rank1,emmmm发现自己没这个天赋。
代码:
#define Troy #include "bits/stdc++.h" using namespace std; const int mod=,N=5e5+; inline int powmod(int a,int b){
int ret=;
while(b){
if(b&) ret=ret*1ll*a%mod;
b>>=;
a=a*1ll*a%mod;
}return ret;
} int prim[N],num,mu[N],vis[N],sum[N],ans,f[N]; inline int calc(int n,int m,int t){
register int i,j;
int ret=;
for (i=;i<=m;++i){
f[i]=f[i]*1ll*i%mod;
vis[i]=mu[i]*(f[i]*1ll*f[i]%mod);
vis[i]+=vis[i-];
vis[i]%=mod;
sum[i]=sum[i-]+f[i];
sum[i]%=mod;
}
for (i=;i<=n;i=j+){
j=min(n/(n/i),m/(m/i));
ret=(ret+(vis[j]-vis[i-])*1ll*sum[n/i]%mod*sum[m/i])%mod;
}
return ret;
} int main(){
int n,m;
scanf("%d%d",&n,&m);
if(n>m) swap(n,m);
register int i,j;
for(i=,mu[]=;i<=n;++i){
if(!vis[i]) {
mu[i]=-,prim[++num]=i;
}for(j=;prim[j]*i<=n;++j){
vis[i*prim[j]]=true;
if(i%prim[j]==) {
mu[i*prim[j]]=;break;
}mu[i*prim[j]]=-mu[i];
}
}
for(i=;i<=m;++i) f[i]=;
for(i=;i<=n;++i){
ans=(ans+powmod(i,i)*1ll*calc(n/i,m/i,i))%mod;
}
printf("%d\n",ans);
}
【BZOJ 3561】 DZY Loves Math VI的更多相关文章
- 【bzoj 3309 】 DZY Loves Math
Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007)=1, f(1)=0.给定正整数a,b,求 ...
- 【BZOJ 3309】DZY Loves Math
http://www.lydsy.com/JudgeOnline/problem.php?id=3309 \[\sum_{T=1}^{min(a,b)}\sum_{d|T}f(d)\mu(\frac ...
- 【BZOJ3561】DZY Loves Math VI (数论)
[BZOJ3561]DZY Loves Math VI (数论) 题面 BZOJ 题解 \[\begin{aligned} ans&=\sum_{i=1}^n\sum_{j=1}^m\sum_ ...
- 【bzoj3561】DZY Loves Math VI 莫比乌斯反演
题目描述 给定正整数n,m.求 输入 一行两个整数n,m. 输出 一个整数,为答案模1000000007后的值. 样例输入 5 4 样例输出 424 题解 莫比乌斯反演 (为了方便,以下公式默认$ ...
- 【BZOJ 3569】DZY Loves Chinese II 随机化+线性基
用到一个结论——[先建树,再给每个非树边一个权值,每个树边的权值为覆盖他的非树边的权值的异或和,然后如果给出的边存在一个非空子集异或和为0则不连通,否则连通](必须保证每条边的出现和消失只能由自己产生 ...
- 【BZOJ 3569】DZY Loves Chinese II
题面 Description 神校XJ之学霸兮,Dzy皇考曰JC. 摄提贞于孟陬兮,惟庚寅Dzy以降. 纷Dzy既有此内美兮,又重之以修能. 遂降临于OI界,欲以神力而凌♂辱众生. 今Dzy有一魞歄图 ...
- 【BZOJ 3569】 DZY Loves Chinese II
题目连接: 传送门 题解: 先%一发大佬的题解. 考虑一个图,删除一些边以后不连通的条件为,某个联通块与外界所有连边都被删掉,而不只是生成树中一个树边与所以覆盖它的非树边(很容易举出反例). 那么考虑 ...
- 【BZOJ 3561】 3561: DZY Loves Math VI (莫比乌斯,均摊log)
3561: DZY Loves Math VI Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 205 Solved: 141 Description ...
- BZOJ 3561 DZY Loves Math VI
BZOJ 3561 DZY Loves Math VI 求\(\sum_{i=1}^{n}\sum_{j=1}^{m}\text{lcm}(i,j)^{\gcd(i,j)}\),钦定\(n\leq m ...
随机推荐
- 《转》iOS 平台 Cocos2d-x 项目接入新浪微博 SDK 的坑
最近在做一个 iOS 的 cocos2d-x 项目接入新浪微博 SDK 的时候被“坑”了,最后终于顺利的解决了.发现网上也有不少人遇到一样的问题,但是能找到的数量有限的解决办法写得都不详细,很难让人理 ...
- vs工具
首页 精选版块 论坛帮助 论坛牛人 论坛地图 专家问答 CSDN > CSDN论坛 > .NET技术 > 非技术区 返回列表 管理菜单 结帖 发帖 回复 关注 [推荐] Visual ...
- java面试题之分析(二)
QUESTION NO:2 package com.cdu.test; public class Test { static boolean foo(char c) { System.out.pri ...
- java安全——BASE64
这个主题主要是关于java安全的,应该来说算是个大杂烩吧,但是又不缺乏实用性,算是作为一个总结,用的时候可以作为参考. 1.使用BASE64加解密 在java加密技术中,BASE64算是一种最简单.最 ...
- SignUtil
最近接的新项目 加密比较多 我就记录下. SignUtil是jnewsdk-mer-1.0.0.jar com.jnewsdk.util中的一个工具类.由于我没有百度到对应的信息.所以我只能看源码 ...
- DjangoUeditor项目的集成
DjangoUeditor这个项目,出品人已经不再提供维护支持. 最近在一个使用到aliyun oss的项目里集成了一次这个东西,当然我之前在普通文件上传的北京下已经集成过很多次了. 主要修改的东西就 ...
- android 开发中,经常遇到http://dl-ssl.google.com/ 无法访问的问题解决
window - android sdk manager 在选择某个版本sdk安装时,总是出现http://dl-ssl.google.com/无法链接的问题,那是因为qiang太高了,不过也还是有办 ...
- php使用http_build_query,parse_url,parse_str创建与解析url详解
1.http_build_query string http_build_query ( mixed $query_data [, string $numeric_prefix [, string $ ...
- bootstrap-table+x-editable入门
Bootstrap-table 快速入门bootstrap-table----我的表单不可能这么帅. Table of contents Quick start Why use it What's i ...
- C#高级编程笔记之第一章:.NET体系结构
1.1 C#与.NET的关系 C#不能孤立地使用,必须与.NET Framework一起使用一起考虑. (1)C#的体系结构和方法论反映了.NET基础方法论. (2)多数情况下,C#的特定语言功能取决 ...