标签(空格分隔): Opencv


相机标定是图像处理的基础,虽然相机使用的是小孔成像模型,但是由于小孔的透光非常有限,所以需要使用透镜聚焦足够多的光线。在使用的过程中,需要知道相机的焦距、成像中心以及倾斜因子(matlab的模型有考虑,实际中这个因子很小,也可以不考虑)。为了增加光照使用了透镜,而使用透镜的代价是会产生畸变,现在市面上买到的相机,都存在着或多或少的畸变。畸变的种类比较多,这里介绍常见的两种:径向畸变、切向畸变。相机标定就是求解相机的内参数以及畸变参数的过程。

畸变种类

(1)径向畸变(参考自《学习opencv》412页)
摄像头的透镜在传感器的边缘产生显著的畸变,如下图所示。对于径向畸变,光学中心的畸变为-,随着向边缘移动,畸变会越来越严重。由于畸变比较小,所以可以用泰勒级数的低阶项来近似。

(2)切向畸变。
另外一种需要考虑的相机畸变是切向畸变,切向畸变的主要原因是透镜本身和图像平面不平行,如下左图所示。切向畸变导致的结果是在成像平面上所成的像为下右图所示。

相机的标定

相机的标定主要有两种:传统的摄像头标定方法和摄像头自标定方法,典型的有:(1)Tsai(传统的标定方法);(2)张正友(介于传统和自标定之间)。张正友标定方法由于简单、效果好而得到广泛使用。这里只介绍张正友标定方法。

  • 张正友标定法的标定步骤
    1、打印一张模板并贴在一个平面上;
    2、从不同角度拍摄若干张模板图像;
    3、检测出图像中的特征点;
    4、求出摄像机的外参数(单应性矩阵)和内参数(最大似然估计) ;
    5、求出畸变系数;
    6、优化求精。

  • 理论基础
    现在来介绍张正友标定方法中的理论知识,以飨读者。张正友标定方法的主要思想是、
    1、相机内参矩阵
    \[ q=MQ\]
    其中,\[
    q=\left[
    \begin{array}{c}
    u \\
    v \\
    w
    \end{array}
    \right] ,\quad
    M=
    \left[
    \begin{array}{ccc}
    f_x & s & c_x \\
    0 & f_y & c_y \\
    0 & 0 & 1
    \end{array}
    \right],\quad
    Q=\left[
    \begin{array}{c}
    X \\
    Y \\
    Z
    \end{array}
    \right]
    \]
    \(q\)的坐标系是默认的OpenCV的像素坐标系,\(Q\)的坐标系是标定板坐标系,Z轴为0,原点在标定板的某个内角点上(标定板上角点的坐标均为[*,*,0]的形式),在Open CV 3.0中使用的是(\([i*Squres\_Size,j*Square\_Size,0]\)的形式)。其中\(f_x\)和\(f_y\)表示相机\(x\)轴和\(y\)轴的焦距,\(s\)表示成像平面\(x\)轴和\(y\)轴的不正交性(OpenCV模型中把该项置为0,Matlab考虑了该项)。
    2、基础公式
    对于不同位置的棋盘格到相机的成像,可以使用下面的公式进行表示:
    \[s\tilde{m}=A[R|t]\tilde{M}\]
    其中,\([R|t]\)表示棋盘格坐标系相对于相机坐标系的位姿。把矩阵\(R\)和\(\tilde{M}\)写开,如下式所示:
    \[
    \tilde{m}=
    \left[
    \begin{array}{c}
    u \\
    v \\
    1
    \end{array}
    \right],\quad
    \tilde{M}=
    \left[
    \begin{array}{c}
    X \\
    Y \\
    0 \\
    1
    \end{array}
    \right],\quad
    R=[r_1\quad r_2\quad r_3],\quad
    \tilde{M}=
    \left[
    \begin{array}{c}
    X \\
    Y \\
    0 \\
    1
    \end{array}
    \right]
    \]
    进行化简得到:
    \[
    s
    \left[
    \begin{array}{c}
    u \\
    v \\
    1
    \end{array}
    \right]=A[r_1\quad r_2\quad t]
    \left[
    \begin{array}{c}
    X \\
    Y \\
    1
    \end{array}
    \right]
    \]
    其中\([u\quad v\quad 1]\)是已知量,\([X\quad Y\quad 1]\)也是已知量,\(A\)和\([r_1\quad r_2 \quad t]\)是未知量。
    其中\(H=A[r_1\quad r_2\quad t]\)又叫做单应性矩阵,可以使用下面的\(3\)中所述的方法求解。
    3、单应矩阵求解:
    这里使用的方法基于最大似然准则:假设提取的\(m\)存在均值为0,噪声协方差矩阵为的高斯白噪声。
    则优化目标为
    \[\sum_{i}(m_i-\hat{m}_i)^T\Lambda_{m_i}^{-1}(m_i - \hat{m}_i)\]
    其中\[m_i= \frac{1}{\overline{h}_3^TM_i}
    \left[
    \begin{array}{c}
    \overline{h}_1^TM_i\\
    \overline{h}_2^TM_i
    \end{array}
    \right]\],其中\(\overline{h}_i\)是矩阵\(H\)的第\(i\)列,并且假设\(\Lambda_{m_i}=\sigma^2 I\)(\(m_i\)、\(M_i\)已知)
    求解上面的非线性优化问题可以使用LM算法。
    (1)初始值求解
    令\(x=[\overline{h}_1,\overline{h}_2,\overline{h}_3]\),则\(s\tilde{m}=H\tilde{M}\)可以重写为
    \[
    \left[
    \begin{array}{ccc}
    \tilde{M}^T & 0^T & -u\tilde{M}^T \\
    0^T & \tilde{M}^T & -v\tilde{M}^T
    \end{array}
    \right]x=0
    \]
    对于\(n\)个点,对应\(n\)个方程,\(Lx=0\),其中\(x\)是\(1\times 9\)的,\(L\)是\(2n\times 9\)的。\(x\)的解对应于\(L\)的最小奇异值的右奇异向量。
    Q:为什么用svd求了,还需要用最大似然方法来优化?svd求的\(H\)是有误差的,需要用优化来精确求解。
    4、求解相机内参
    (1)利用约束条件求解内参矩阵A
    在公式中,由于\(r_1\)和\(r_2\)是单位向量且是正交的,所以存在下面的关系:
    \[h_1^TA^{-T}A^{-1}h_2=0\\
    h_1^TA^{-T}A^{-1}h_1=h_2^TA^{-T}A^{-1}h_2\]
    上面的公式写成方程组的形式如下所示:
    \[
    \left[
    \begin{array}{c}
    v_{12}^T \\
    (v_{11}-v_{22})^T
    \end{array}
    \right]
    b=0
    \]
    上面的等式是一个最小二乘问题,可以使用SVD求解.由于A有5个参数:\(\alpha,\beta,u_0,v_0,\gamma\),一个单应性矩阵对应两个约束,所以求解A需要3个单应性矩阵,也就是最小需要3幅图像(超定方程)。当然,
    也可以使用两个单应性矩阵,此时需要令\(\gamma=0\)。算出了b之后,可以用下面的公式求\(A\)。
    \[
    v_0=(B_{12}B_{13}-B_{11}B_{23})/(B_{11}B_{22}-B_{12}^2)\\
    \lambda=B_{33}-[B_{13}^2+v_0(B_{12}B_{13}-B_{11}B_{23})]/B_{11} \\
    \alpha = \sqrt{\lambda/B_{11}}\\
    \beta=\sqrt{\lambda B_{11}/(B_{11}B_{12}-B_{12}^2)} \\
    \gamma= -B_{12}\alpha^2 \beta / \lambda \\
    u_0 =\gamma v_0 / \beta - B_{13}\alpha^2 / \lambda
    \]
    5、求解相机外参
    在上面求解了相机的内参之后,可以求出棋盘格的位姿,公式如下:
    \[
    r_1 = \lambda A^{-1}h_1 \\
    r_2 = \lambda A^{-1}h_2 \\
    r_3 = r_1 \times h_2
    t = \lambda A^{-1} h_3
    \]
    在OpenCV中,上面的公式是用来求解优化参数的初始值的,最终的结果是使用优化的方法得到的。
    由于存在误差,还是需要迭代求解以提高精度(问题描述如下):
    给定棋盘格的\(n\)个图像和\(m\)个角点,并假设图像点被独立同分布的噪声影响。
    似然函数如下所示:
    \[\sum_{i=1}^{n}\sum_{j=1}^{m}=\Vert m_{ij}-m(A,R_i, t_i, M_j)\Vert^2\]
    其中旋转矩阵\(R\)用向量\(r\)表示(罗巨格公式)
    6、相机的畸变参数求解
    上面的讨论中一直没有引入相机畸变的问题,这里引入相机的畸变。
    记\((u,v)\)为理想的像素坐标,\((\breve{u},\breve{v})\)为实际观测得到的像素坐标(受到畸变)。同样的,有归一化的相机坐标系\((x,y)\)和\((\breve{x},\breve{y})\)
    对于径向畸变(这是张正友上的模型,泰勒展开):
    \[
    \breve{x}=x+x[K_1(x^2+y^2)+k_2(x^2+y^2)^2]\\
    \breve{y}=y+y[K_1(x^2+y^2)+k_2(x^2+y^2)^2]
    \]
    用像素坐标表示则为:
    \[
    \breve{u}=u+(u-u_0)[K_1(x^2+y^2)+k_2(x^2+y^2)^2]\\
    \breve{v}=v+(v-v_0)[K_1(x^2+y^2)+k_2(x^2+y^2)^2]
    \]
    写成如下形式:
    \[
    \left[
    \begin{array}{cc}
    (u-u_0)(x^2+y^2) & (u-u_0)(x^2+y^2)^2\\
    (v-v_0)(x^2+y^2) & (v-v_0)(x^2+y^2)
    \end{array}
    \right]
    \left[
    \begin{array}{c}
    k_1 \\
    k_2
    \end{array}
    \right]=
    \left[
    \begin{array}{c}
    \breve{u}-u \\
    \breve{v}-v
    \end{array}
    \right]
    \]
    给定\(n\)个图像中的\(m\)个点,可以得到\(2mn\)个方程,记为\(Dk=d\)。
    则\(k=(D^TD)^{-1}D^Td\)。
    最小二乘方法求解:
    \[\sum_{i=1}^{n}\sum_{j=1}^{m}\Vert m_{ij}-\breve{m} (A,k_1,k_2,R_i,t_i,M_j)\Vert^2\]
    如果求解了畸变参数\(k_1\)和\(k_2\),则可以求解出没有畸变的坐标,从而使用上面的方法求解位姿和内参。
    畸变参数\(k_1\)和\(k_2\)初始化可以简单的设为0,也可以使用后续的估计方法。
    OpenCV的模型(《学习OpenCV》,这是Brown和Fryer的工作)还包括了切向畸变,并且镜像畸变有三项。因此,opencv中一共有五个参数\([k_1,k_2,p1,p2,k_3]\)。

OpenCV的标定步骤

1、初始化参数求解;
a、求解单应性矩阵;
b、根据理论的第4步求解相机内参的初始值;
c、根据理论的第5步求解相机外参的初始值;
d、畸变参数设置为0。
2、迭代求解总体最小二乘问题,也就是上面6所示的最小二乘问题。

后面会接着介绍最小二乘中的数学相关知识。

OpenCV相机标定的更多相关文章

  1. OpenCV相机标定和姿态更新

    原帖地址: http://blog.csdn.net/aptx704610875/article/details/48914043 http://blog.csdn.net/aptx704610875 ...

  2. Opencv——相机标定

    相机标定的目的:获取摄像机的内参和外参矩阵(同时也会得到每一幅标定图像的选择和平移矩阵),内参和外参系数可以对之后相机拍摄的图像就进行矫正,得到畸变相对很小的图像. 相机标定的输入:标定图像上所有内角 ...

  3. OpenCV相机标定坐标系详解

    在OpenCV中,可以使用calibrateCamera函数,通过多个视角的2D/3D对应,求解出该相机的内参数和每一个视角的外参数. 使用C++接口时的输入参数如下: objectPoints - ...

  4. OpenCV 相机标定 findChessboardCorners() 与 cornerSubPix() 函数

    OpenCV 官方文档 findChessboardCorners():Finds the positions of internal corners of the chessboard. bool ...

  5. SLAM入门之视觉里程计(6):相机标定 张正友经典标定法详解

    想要从二维图像中获取到场景的三维信息,相机的内参数是必须的,在SLAM中,相机通常是提前标定好的.张正友于1998年在论文:"A Flexible New Technique fro Cam ...

  6. 【视频开发】【计算机视觉】相机标定(Camera calibration)原理、步骤

    相机标定(Camera calibration)原理.步骤 author@jason_ql(lql0716)  http://blog.csdn.net/lql0716 在图像测量过程以及机器视觉应用 ...

  7. 相机标定 matlab opencv ROS三种方法标定步骤(2)

    二  ubuntu下Opencv的相机标定 一般直接用Opencv的源码就可以进行相机的标定,但是可能只是会实现结果,却不懂实现的过程,我也是模模糊糊的看了<计算机视觉中的多视图几何>以及 ...

  8. 相机标定 matlab opencv ROS三种方法标定步骤(3)

    三 ,  ROS 环境下 如何进行相机标定 刚开始做到的时候遇到一些问题没有记录下来,现在回头写的时候都是没有错误的结果了,首先使用ROS标定相机, 要知道如何查看节点之间的流程图  rosrun r ...

  9. 相机标定 matlab opencv ROS三种方法标定步骤(1)

    一 . 理解摄像机模型,网上有很多讲解的十分详细,在这里我只是记录我的整合出来的资料和我的部分理解 计算机视觉领域中常见的三个坐标系:图像坐标系,相机坐标系,世界坐标系,实际上就是要用矩阵来表 示各个 ...

随机推荐

  1. [ZJOI2010]排列计数

    题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很 ...

  2. 网络基础-再议TCP

    以前只是知道3次握手和4次挥手,但是对于其在连接和断开时的各个状态却不是很懂,今天就来看一下握手和挥手时的状态转换图: 1.三次握手和四次挥手时的状态转换图: 实线表示应用程序: 应用层首先发SYN的 ...

  3. HDU 3341 Lost's revenge AC自动机+dp

    Lost's revenge Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)T ...

  4. zoj2112 树状数组+主席树 区间动第k大

    Dynamic Rankings Time Limit: 10000MS   Memory Limit: 32768KB   64bit IO Format: %lld & %llu Subm ...

  5. TDMA over WiFi

    0 引言 TDMA可以修正WiFi中DCF机制中连接速率不同终端间信道占用时间片公平性缺陷,从而提升整体WiFi网络的性能.著名的UBNT的网桥就用其独创的TDMA技术为其赢得了市场.以前是不同的公司 ...

  6. spaCy is a library for advanced natural language processing in Python and Cython:spaCy 工业级自然语言处理工具

    spaCy is a library for advanced natural language processing in Python and Cython. spaCy is built on ...

  7. glusterfs 4.0.1 rpc 分析笔记1

    Jimmy的文档:Glusterfs的rpc模块分析 第一节.rpc服务器端实现原理及代码分析 第二节.rpc客户端实现原理及代码分析 第三节.rpc通信过程分析 经过阅读源码对比之前提及的文档,我个 ...

  8. flask jQuery ajax 上传文件

    1.html 代码 <div> <form id="uploadForm" enctype="multipart/form-data" > ...

  9. React学习笔记(一)- 环境搭建

    最近在学习react相关的知识,刚刚起步,一路遇坑不断.自己做个笔记,方便日后总结,也供相同趣味的小伙伴一起交流探讨. 学习时主要参考官网的教程:https://facebook.github.io/ ...

  10. mybatis自动生成

    很简单只要配两个文件 pom.xml <?xml version="1.0" encoding="UTF-8"?> <project xmln ...