【PowerOJ1741&网络流24题】最长递增子序列问题(最大流)
题意:
思路:
【问题分析】
第一问时LIS,动态规划求解,第二问和第三问用网络最大流解决。
【建模方法】
首先动态规划求出F[i],表示以第i位为开头的最长上升序列的长度,求出最长上升序列长度K。
1、把序列每位i拆成两个点<i.a>和<i.b>,从<i.a>到<i.b>连接一条容量为1的有向边。
2、建立附加源S和汇T,如果序列第i位有F[i]=K,从S到<i.a>连接一条容量为1的有向边。
3、如果F[i]=1,从<i.b>到T连接一条容量为1的有向边。
4、如果j>i且A[i] < A[j]且F[j]+1=F[i],从<i.b>到<j.a>连接一条容量为1的有向边。
求网络最大流,就是第二问的结果。把边(<1.a>,<1.b>)(<N.a>,<N.b>)(S,<1.a>)(<N.b>,T)这四条边的容量修改为无穷大,再求一次网络最大流,就是第三问结果。
【建模分析】
上述建模方法是应用了一种分层图的思想,把图每个顶点i按照F[i]的不同分为了若干层,这样图中从S出发到T的任何一条路径都是一个满足条件的最长上升子序列。由于序列中每个点要不可重复地取出,
需要把每个点拆分成两个点。单位网络的最大流就是增广路的条数,所以最大流量就是第二问结果。第三问特殊地要求x1和xn可以重复使用,只需取消这两个点相关边的流量限制,求网络最大流即可。
实质上也只有两层,不如叫裂点
单位网络的最大流就是增广路的条数 这个性质需要记住
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned int uint;
typedef unsigned long long ull;
typedef long double ld;
typedef pair<int,int> PII;
typedef pair<ll,ll> Pll;
typedef vector<int> VI;
typedef vector<PII> VII;
typedef pair<ll,ll>P;
#define N 100010
#define M 1000000
#define INF 1e9
#define fi first
#define se second
#define MP make_pair
#define pb push_back
#define pi acos(-1)
#define mem(a,b) memset(a,b,sizeof(a))
#define rep(i,a,b) for(int i=(int)a;i<=(int)b;i++)
#define per(i,a,b) for(int i=(int)a;i>=(int)b;i--)
#define lowbit(x) x&(-x)
#define Rand (rand()*(1<<16)+rand())
#define id(x) ((x)<=B?(x):m-n/(x)+1)
#define ls p<<1
#define rs p<<1|1 const ll MOD=1e9+,inv2=(MOD+)/;
double eps=1e-;
int dx[]={-,,,};
int dy[]={,,-,}; int head[N],vet[N],len[N],nxt[N],dp[N],a[N],dis[N],num[N][],s,S,T,K,n,tot; int read()
{
int v=,f=;
char c=getchar();
while(c<||<c) {if(c=='-') f=-; c=getchar();}
while(<=c&&c<=) v=(v<<)+v+v+c-,c=getchar();
return v*f;
} void add(int a,int b,int c)
{
nxt[++tot]=head[a];
vet[tot]=b;
len[tot]=c;
head[a]=tot; nxt[++tot]=head[b];
vet[tot]=a;
len[tot]=;
head[b]=tot;
} bool bfs()
{
queue<int>q;
rep(i,,s) dis[i]=-;
q.push(S),dis[S]=;
while(!q.empty())
{
int u=q.front();
q.pop();
int e=head[u];
while(e)
{
int v=vet[e];
if(len[e]&&dis[v]==-)
{
dis[v]=dis[u]+;
q.push(v);
}
e=nxt[e];
}
}
return dis[T]!=-;
} int dfs(int u,int aug)
{
if(u==T) return aug;
int e=head[u],val=,flow=;
while(e)
{
int v=vet[e];
if(len[e]&&dis[v]==dis[u]+)
{
int t=dfs(v,min(len[e],aug));
if(!t)
{
e=nxt[e];
continue;
}
flow+=t;
aug-=t;
len[e]-=t;
len[e^]+=t;
if(!aug) break;
}
e=nxt[e];
}
if(!flow) dis[u]=-;
return flow;
} int maxflow()
{
int res=;
while(bfs()) res+=dfs(S,INF);
return res;
} void solve1()
{
s=;
rep(i,,n)
rep(j,,) num[i][j]=++s;
S=++s;
T=++s;
rep(i,,s) head[i]=;
tot=;
rep(i,,n) add(num[i][],num[i][],);
rep(i,,n)
if(dp[i]==) add(S,num[i][],);
rep(i,,n)
if(dp[i]==K) add(num[i][],T,);
rep(i,,n)
rep(j,i+,n)
if(a[j]>a[i]&&dp[j]==dp[i]+) add(num[i][],num[j][],);
int ans=maxflow();
printf("%d\n",ans);
} void solve2()
{
rep(i,,s) head[i]=;
tot=;
add(num[][],num[][],INF);
add(num[n][],num[n][],INF);
rep(i,,n-) add(num[i][],num[i][],);
rep(i,,n)
if(dp[i]==)
{
if(i==||i==n) add(S,num[i][],INF);
else add(S,num[i][],);
} rep(i,,n)
if(dp[i]==K)
{
if(i==||i==n) add(num[i][],T,INF);
else add(num[i][],T,);
} rep(i,,n)
rep(j,i+,n)
if(a[j]>a[i]&&dp[j]==dp[i]+) add(num[i][],num[j][],);
int ans=maxflow();
if(ans>INF) ans=n;
printf("%d\n",ans);
} int main()
{
//freopen("1.in","r",stdin);
n=read();
rep(i,,n) a[i]=read();
rep(i,,n)
{
dp[i]=;
rep(j,,i-)
if(a[j]<a[i]) dp[i]=max(dp[i],dp[j]+);
}
K=;
rep(i,,n) K=max(K,dp[i]);
printf("%d\n",K);
solve1();
solve2();
return ;
}
【PowerOJ1741&网络流24题】最长递增子序列问题(最大流)的更多相关文章
- COGS731 [网络流24题] 最长递增子序列(最大流)
给定正整数序列x1,..., xn (n<=500).(1)计算其最长递增子序列的长度s.(2)计算从给定的序列中最多可取出多少个长度为s的递增子序列.(3)如果允许在取出的序列中多次使用x1和 ...
- Cogs 731. [网络流24题] 最长递增子序列(最大流)
[网络流24题] 最长递增子序列 ★★★☆ 输入文件:alis.in 输出文件:alis.out 简单对比 时间限制:1 s 内存限制:128 MB «问题描述: 给定正整数序列x1,-, xn. ( ...
- loj6005 [网络流24题]最长递增子序列
题意:给你一个序列,求不严格上升lcs长度/最多有几个没有重复元素的lcs/如果x1和xn可以多次出现,求最多有几个lcs?n<=500. 标程: #include<cstdio> ...
- COGS743. [网络流24题] 最长k可重区间集
743. [网络流24题] 最长k可重区间集 ★★★ 输入文件:interv.in 输出文件:interv.out 简单对比时间限制:1 s 内存限制:128 MB «问题描述: «编 ...
- [网络流24题]最长k可重区间集[题解]
最长 \(k\) 可重区间集 题目大意 给定实心直线 \(L\) 上 \(n\) 个开区间组成的集合 \(I\) ,和一个正整数 \(k\) ,试设计一个算法,从开区间集合 \(I\) 中选取开区间集 ...
- LibreOJ #6013. 「网络流 24 题」负载平衡 最小费用最大流 供应平衡问题
#6013. 「网络流 24 题」负载平衡 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据 题目描述 ...
- LibreOJ #6008. 「网络流 24 题」餐巾计划 最小费用最大流 建图
#6008. 「网络流 24 题」餐巾计划 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据 题目描述 ...
- [网络流24题] 最长K可重区间集问题
题目链接:戳我 当时刷24题的时候偷了懒,没有写完,结果落下这道题没有写qwq结果今天考试T3中就有一部分要用到这个思想,蒟蒻我硬是没有想到网络流呜呜呜 最大费用流. 就是我们考虑将问题转化一下,转化 ...
- P2766 [网络流24题]最长不下降子序列问题
ha~ «问题描述: 给定正整数序列$x_1,...,x_n$ .$n<=500$ 求(1)计算其最长不下降子序列的长度$s$. (2)计算从给定的序列中最多可取出多少个长度为$s$的不下降子序 ...
随机推荐
- numpy的linalg.norm()函数求范数
函数签名:def norm(x, ord=None, axis=None, keepdims=False) 其中ord参数表示求什么类型的范数,具体参见下表 下面是用代码对一个列表求上面的范数 imp ...
- input标签内容改变时触发事件
1. onchange事件与onpropertychange事件的区别: onchange事件在内容改变(两次内容有可能相等)且失去焦点时触发: onpropertychange事件是实时触发,每增加 ...
- eclipse sts 快捷键
1. ctrl + m 全屏/取消全屏 2.快速切换上面标签 ctrl + pageup/pagedown : 标签左右切换 ctrl + < > : 标签前后访问处切换 New Ja ...
- HashMap源码分析-jdk1.7
注:转载请注明出处!!!!!!!这里咱们看的是JDK1.7版本的HashMap 学习HashMap前先知道熟悉运算符合 *左移 << :就是该数对应二进制码整体左移,左边超出的部分舍弃,右 ...
- C#获取当前路径7中方法
//获取模块的完整路径. string path1 = System.Diagnostics.Process.GetCurrentProcess().MainModule.FileName; //获取 ...
- 【转】mysqldump原理探究
作者:胡儿胡儿 来源:CSDN 原文:https://blog.csdn.net/cug_jiang126com/article/details/49824471 —————————————————— ...
- Tomcat控制台中文乱码
参考:https://blog.csdn.net/zhaoxny/article/details/79926333 1.找到${CATALINA_HOME}/conf/logging.properti ...
- nginx重新编译安装upload模块
由于php处理上传会出现超时,并且显示上传进度官方php不支持nginx+php,所以决定让nginx自己处理上传,我本地环境是mac上已经安装过nginx1.8.0,安装方式为brew,所以需要重新 ...
- 自动清理ES索引脚本
#/bin/bash #指定日期(3个月前) DATA=`date -d "3 month ago" +%Y.%m.%d` #当前日期 time=`date` #删除3个月前的日志 ...
- C# 静态方法调用非静态方法
转载:http://blog.csdn.net/seattle1215/article/details/6657814 using System; using System.Collections.G ...