洛谷P3412 仓鼠找$Sugar\ II$题解(期望+统计论?)
洛谷P3412 仓鼠找\(Sugar\ II\)题解(期望+统计论?)
标签:题解
阅读体验:https://zybuluo.com/Junlier/note/1327573
原题链接:洛谷P3412 仓鼠找sugar II
好像只有洛谷有诶。。。
日常吐槽
这个期望题开发新思维方式还是比较好的。。。
毕竟还是很难想的。。。鸣谢\(fdfDarkfire\)教我做这个题!
题解来了
很容易发现答案就是\(\dfrac{\sum_{i=1}^{n}\sum_{i=1}^{n}dis[i][j]}{n^2}\% MOD\)是吧
但是不会在短时间内算分子部分啊。。。
但是我们可以发现:如果可以固定住终点,那么会很容易算
所以我们先钦定终点在\(1\),然后考虑某种方法来启发计算所有点为终点的情况
终点在\(1\)
不妨把\(1\)作为根
本来一个\(DFS\)可以搞定,但是对正解毫无启发,所以再想一下
我们设\(f[now]\)表示从\(now\)跳到\(fa[now]\)的期望步数
那么有(这个自己思考一下就行了)(\(qw\)是儿子,\(d\)是度数)$$f[now]=1+\frac{1}{d[now]}×\sum(f[qw]+f[now])$$草稿纸上化简一下会得到\(f[now]=d[now]+\sum f[qw]\)
哇,这不是很美丽!得到\(f[now]=\sum d[x]\)(\(x\)在\(now\)的子树内)
突然发现\(f\)数组只和子树度数和有关,嘿嘿、、、
这样也可以很方便地统计答案是吧:\(Ans=siz[now]×f[now]\)
说一下为什么,\(now\)往\(fa[now]\)的边只会被\(now\)的子树中节点去用\(f[x]\)走是吧,而\(f[now]\)全统计到了\(f[x]\),所以直接乘
那么我们发现,固定一个点为终点时答案只和当前点为根时的$\sum $子树大小×子树度数和 有关
拓展到终点随机
上面那个结论很重要
我们现在对每个点进行考虑,是不是它有很多个方向出去,那些方向都有可能有终点
我们分别计算那些终点是在哪一个方向
- 肯定还是先以\(1\)为根把上面所需的所有东西处理出来
- 枚举每个点枚举边考虑根的方向
- 如果根在树中的\(1\)的方向,就是\(fa[now]\)方向,肯定有\(Ans+=siz[now]*f[now]*(n-siz[now])%MOD\)
意思是对于根在\(fa[now]\)方向有\((n-siz[now])\)种位置,而每种位置此时贡献都是\(siz[now]*f[now]\)(上面说了的)- 如果根在树中的某个儿子方向,就是\(qw\)方向,肯定有\((n-siz[qw])*(tot-f[qw])*siz[qw])\),含义的话根据\(fa[now]\)方向的情况自己想一下吧
PS:上面这一段有不理解可以根据代码看
这样我们就统计完了总表达式的分子部分,乘个逆元就解决了。。。
#include<bits/stdc++.h>
#define il inline
#define rg register
#define ldb double
#define lst long long
#define rgt register int
#define N 100050
#define qw ljl[i].to
#define MOD 998244353
using namespace std;
const int Inf=1e9;
il int MAX(rgt x,rgt y){return x>y?x:y;}
il int MIN(rgt x,rgt y){return x<y?x:y;}
il int read()
{
int s=0,m=0;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')m=1;ch=getchar();}
while( isdigit(ch))s=(s<<3)+(s<<1)+(ch^48),ch=getchar();
return m?-s:s;
}
int n;lst Ans;
int hd[N],cnt,tot;
int f[N],siz[N],fa[N],d[N];
//f: the step's expectation of now jumps to fa[now] (as the root of 1)
//f[now]=Σf[qw]+d[now]=totd[](in son_tree) 写题的时候写的傻逼英语。。。
struct EDGE{int to,nxt;}ljl[N<<1];
il void Add(rgt p,rgt q){ljl[++cnt]=(EDGE){q,hd[p]},hd[p]=cnt;}
il void ADD(rg lst &x,rg lst y){x+=y;if(x>MOD)x-=MOD;}
il int qpow(rg lst x,rgt y)
{
rg lst ret=1;
while(y)
{
if(y&1)ret=(ret*x)%MOD;
x=(x*x)%MOD,y>>=1;
}return ret;
}
void Dfs(rgt now,rgt fm)
{
fa[now]=fm,siz[now]=1,f[now]=d[now];
for(rgt i=hd[now];i;i=ljl[i].nxt)
{
if(qw==fm)continue;Dfs(qw,now);
siz[now]+=siz[qw],f[now]+=f[qw];
}
}
int main()
{
n=read();
for(rgt i=1,p,q;i<n;++i)
{
p=read(),q=read();
++d[p],++d[q],Add(p,q),Add(q,p);
}Dfs(1,0);
for(rgt i=1;i<=n;++i)tot+=d[i];
for(rgt now=1;now<=n;++now)
for(rgt i=hd[now];i;i=ljl[i].nxt)
{
if(qw==fa[now])ADD(Ans,1LL*siz[now]*f[now]%MOD*(n-siz[now])%MOD);
else ADD(Ans,1LL*(n-siz[qw])*(tot-f[qw])%MOD*siz[qw]%MOD);
}
return printf("%lld\n",Ans*qpow(1LL*n*n%MOD,MOD-2)%MOD),0;
}
洛谷P3412 仓鼠找$Sugar\ II$题解(期望+统计论?)的更多相关文章
- Luogu P3412 仓鼠找$sugar$ $II$
Luogu P3412 仓鼠找\(sugar\) \(II\) 题目大意: 给定一棵\(n\)个点的树, 仓鼠每次移动都会等概率选择一个与当前点相邻的点,并移动到此点. 现在随机生成一个起点.一个终点 ...
- 洛谷P3398 仓鼠找sugar [LCA]
题目传送门 仓鼠找sugar 题目描述 小仓鼠的和他的基(mei)友(zi)sugar住在地下洞穴中,每个节点的编号为1~n.地下洞穴是一个树形结构.这一天小仓鼠打算从从他的卧室(a)到餐厅(b),而 ...
- 洛谷 P3398 仓鼠找sugar 解题报告
P3398 仓鼠找sugar 题目描述 小仓鼠的和他的基(mei)友(zi)sugar住在地下洞穴中,每个节点的编号为1~n.地下洞穴是一个树形结构.这一天小仓鼠打算从从他的卧室(a)到餐厅(b),而 ...
- 洛谷 P3398 仓鼠找sugar 题解
每日一题 day44 打卡 Analysis 首先有一个结论:先找 p1=(a,b),p2=(c,d) 的LCA的深度,在与(a,c),(a,d),(b,c),(b,d)中最深的LCA n的深度比较, ...
- 洛谷P3398 仓鼠找sugar
题目描述 小仓鼠的和他的基(mei)友(zi)sugar住在地下洞穴中,每个节点的编号为1~n.地下洞穴是一个树形结构.这一天小仓鼠打算从从他的卧室(a)到餐厅(b),而他的基友同时要从他的卧室(c) ...
- 洛谷——P3398 仓鼠找sugar
https://www.luogu.org/problem/show?pid=3398#sub 题目描述 小仓鼠的和他的基(mei)友(zi)sugar住在地下洞穴中,每个节点的编号为1~n.地下洞穴 ...
- 洛谷 3398 仓鼠找sugar 【模板】判断树上两链有交
[题解] 题意就是判断树上两条链是否有交.口诀是“判有交,此链有彼祖”.即其中一条链的端点的Lca在另一条链上. 我们设两条链的端点的Lca中深度较大的为L2,对L2与另一条链的两个端点分别求Lca, ...
- 洛谷 [P3398] 仓鼠找sugar
树剖求LCA 我们可以发现,两条路径ab,cd相交,当且仅当 dep[lca(a,b)]>=dep[lca(c,d)]&(lca(lca(a,b),c)==lca(a,b)||lca(l ...
- P3412 仓鼠找sugar II
思路 挺神的概率期望.. 好吧是我太弱了,完全没有往那里想 注意期望是具有线性性的,一条路径的期望可以变成每条边的期望求和 概率是某件事发生的可能性,期望是某件事确定发生的代价 首先没有终点的条件并不 ...
随机推荐
- linux服务器外网内网(双网络)搭建
一共有2台服务器,分别用a,b表示.a双网卡,即有外网也有内网.b只有内网环境.a,b的内网是通过交换机组建.至于外网怎么搭建我就不说了.关键说一说内网是怎么组建的. 如果你对linux不熟悉,对网卡 ...
- c++常见函数记录
1.bitsset 模板,可以操作二进制字符串,转化成数字等 2.swap()交换函数,将a,b的值交换 3.stringstream类用于字符串和其他类型的转换,操作方便 4.stx,tr1. 5. ...
- js 获取select的值
var t = document.getElementById("provid"); console.log(t.value); console.log(t.text); //未定 ...
- profile 配置文件修改后如何生效?
1.profile生效命令 . /etc/profile 或 source /etc/profile 说明:source命令也称为“点命令”,也就是一个点符号(.)
- codevs 1126 数字统计 2010年NOIP全国联赛普及组 x
题目描述 Description 请统计某个给定范围[L, R]的所有整数中,数字2出现的次数. 比如给定范围[2, 22],数字2在数2中出现了1次,在数12中出现1次,在数20中出现1次,在数21 ...
- 原型模式故事链(4)--JS执行上下文、变量提升、函数声明
上一章:JS的数据类型 传送门:https://segmentfault.com/a/11... 好!话不多少,我们就开始吧.对变量提升和函数声明的理解,能让你更清楚容易的理解,为什么你的程序报错了~ ...
- 线下作业MySQL #20175201
1.下载附件中的world.sql.zip, 参考http://www.cnblogs.com/rocedu/p/6371315.html#SECDB,导入world.sql,提交导入成功截图 2.编 ...
- 使用SharpZIpLib写的压缩解压操作类
使用SharpZIpLib写的压缩解压操作类,已测试. public class ZipHelper { /// <summary> /// 压缩文件 /// </summary&g ...
- jprofiler监控wls&was配置
jprofiler简介: jprofiler的内存视图部分可以提供动态的内存使用状况更新视图和显示关于内存分配状况信息的视图.所有的视图都有几个聚集层并且能够显示现有存在的对象和作为垃圾回收的对象. ...
- bash脚本计算某程序的进程数
脚本里面有时候需要判断某个程序是否启动,以及有几个进程下面用nginx来做实例 显示所有的nignx进程 ps -ef|grep nginx |grep -v grep 其中grep -v grep表 ...