【题解】Intervals
题目大意
有\(n\)个区间(\(1 \leq n \leq 200\)),第\(i\)个区间覆盖\((a_{i}, b_{i})\)且有权值\(w_{i}\)(\(1 \leq a_{i} < b_{i} \leq 100000\),\(1 \leq w_{i} \leq 100000\)),每个点最多能被覆盖\(k\)次(\(1 \leq k \leq n\)),求最大的权值和为多少。
题解
这里点的坐标很大,所以我们要先离散化,顺便把每个点按照坐标排序。
排完序后,我们可以从\(a_{i}\)向\(b_{i}\)连一条有向边,容量为\(1\),费用为\(w_{i}\)。
同时,对于每个点\(i\)(\(0 \leq i \leq cnt\),其中\(cnt\)表示离散化后的点数,点\(0\)为源点\(s\),点\(cnt + 1\)为汇点\(t\)),我们要从点\(i\)向点\(i + 1\)连一条有向边,容量为\(k\),费用为\(0\)。
建完图后,直接跑最大费用流即可。具体细节可以参考下面的代码。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
#define MAX_N (209 + 5)
#define INF 0x3f3f3f3f
using namespace std;
struct Edge
{
int to;
int weight;
int cost;
int next;
};
int T;
int n, k;
int s, t;
int hash[100005], cnt;
int h[MAX_N << 1], tot;
Edge e[MAX_N << 3];
int dis[MAX_N << 1];
int cur[MAX_N << 1];
bool inque[MAX_N << 1], vis[MAX_N << 1];
queue <int> q;
int maxflow, mincost;
inline void AddEdge(int u, int v, int w, int c)
{
e[++tot].to = v;
e[tot].weight = w;
e[tot].cost = c;
e[tot].next = h[u];
h[u] = tot;
return;
}
bool SPFA()
{
memset(dis, 0x3f, sizeof dis);
memset(inque, 0, sizeof inque);
memcpy(cur, h, sizeof cur);
q.push(s);
dis[s] = 0;
inque[s] = true;
int u, v, w, c;
while(!q.empty())
{
u = q.front();
q.pop();
inque[u] = false;
for(int i = h[u]; i; i = e[i].next)
{
v = e[i].to;
w = e[i].weight;
c = e[i].cost;
if(dis[v] > dis[u] + c && w)
{
dis[v] = dis[u] + c;
if(!inque[v])
{
inque[v] = true;
q.push(v);
}
}
}
}
return dis[t] != INF;
}
int DFS(int u, int flow)
{
vis[u] = true;
if(u == t)
{
maxflow += flow;
mincost += flow * dis[t];
return flow;
}
int v, w, c;
int tmp, sum = 0;
for(int i = cur[u]; i && sum < flow; i = e[i].next)
{
cur[u] = i;
v = e[i].to;
w = e[i].weight;
c = e[i].cost;
if(!vis[v] && dis[v] == dis[u] + c && w)
{
tmp = DFS(v, min(flow - sum, w));
e[i].weight -= tmp;
e[i ^ 1].weight += tmp;
sum += tmp;
}
}
return sum;
}
void Dinic()
{
while(SPFA())
{
do
{
memset(vis, 0, sizeof vis);
DFS(s, k);
}
while(vis[t]);
}
return;
}
int main()
{
scanf("%d", &T);
while(T--)
{
memset(h, 0, sizeof h);
memset(e, 0, sizeof e);
memset(hash, 0, sizeof hash);
cnt = 0;
tot = 1;
maxflow = mincost = 0;
scanf("%d%d", &n, &k);
int u[MAX_N], v[MAX_N], c[MAX_N];
int a[MAX_N << 1];
for(int i = 1; i <= n; ++i)
{
scanf("%d%d%d", &u[i], &v[i], &c[i]);
a[i] = u[i];
a[i + n] = v[i];
}
sort(a + 1, a + n + n + 1);
for(int i = 1; i <= n + n; ++i)
{
if(a[i] != a[i - 1]) hash[a[i]] = ++cnt;
}
for(int i = 1; i <= n; ++i)
{
u[i] = hash[u[i]];
v[i] = hash[v[i]];
AddEdge(u[i], v[i], 1, -c[i]);
AddEdge(v[i], u[i], 0, c[i]);
}
for(int i = 1; i < cnt; ++i)
{
AddEdge(i, i + 1, k, 0);
AddEdge(i + 1, i, 0, 0);
}
s = 0;
t = cnt + 1;
AddEdge(s, 1, k, 0);
AddEdge(1, s, 0, 0);
AddEdge(cnt, t, k, 0);
AddEdge(t, cnt, 0, k);
Dinic();
printf("%d\n", -mincost);
}
return 0;
}
【题解】Intervals的更多相关文章
- [LeetCode]题解(python):056-Merge Intervals
题目来源 https://leetcode.com/problems/merge-intervals/ Given a collection of intervals, merge all overl ...
- 【题解】【区间】【二分查找】【Leetcode】Insert Interval & Merge Intervals
Given a set of non-overlapping intervals, insert a new interval into the intervals (merge if necessa ...
- LeetCode 题解 56. Merge Intervals
题目大意:给出一组区间,合并他们. 首先是排序,首先看start,start小的在前面.start相同的话,end小的在前面. 排序以后,要合并了. 我自己的笨方法,说实在的问题真的很多.提交了好几次 ...
- leetcode个人题解——#56 Merge Intervals
思路,先按照结构体中start进行排序,然后遍历比较前后项是否有重合. 第一次用到三参数形式的sort(),第三个参数的bool函数要写到类外才通过. /** * Definition for an ...
- 【LeetCode】Merge Intervals 题解 利用Comparator进行排序
题目链接Merge Intervals /** * Definition for an interval. * public class Interval { * int start; * int e ...
- HDOJ1384 Intervals 题解
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1384 大意:有 \(n\) 个区间 \([a_i,b_i]\),每个区间有个权值 \(c_i\),找到 ...
- 题解-The Number of Good Intervals
题面 The Number of Good Intervals 给定 \(n\) 和 \(a_i(1\le i\le n)\),\(m\) 和 \(b_j(1\le j\le m)\),求对于每个 \ ...
- 【题解】 POJ 1201 Intervals(差分约束)
懒得复制,戳我戳我 Solution: 这道题就是一个板子题 抽象成第\(a\)至第\(b\)间选择数的个数为\(c\),我们就可以用前缀和来表示,这样就可以得到不等式\(s[b]-s[a-1]> ...
- POJ1375:Intervals——题解
http://poj.org/problem?id=1375 题目大意:有一盏灯,求每段被圆的投影所覆盖的区间. —————————————————————— 神题,卡精度,尝试用各种方法绕过精度都不 ...
随机推荐
- iOS 应用配置及证书生成教程
简介 首先你需要有一个苹果的开发者帐号,一台苹果电脑.点击查看苹果开发者账号注册流程 本教程需完成应用信息配置,包括如下两个基本配置: AppID Bundle ID 同时,生成 如下三个证书文件及对 ...
- static作用,静态成员变量和静态成员函数
static关键字有俩作用:(1).控制存储分配:(2).控制一个名字的可见性和连接. 随着C++名字空间的引入,我们有了更好的,更灵活的方法来控制一个大项目的名字增长. 在类的内部使用s ...
- wireshare文件格式
你用Wireshark打开这个pkt试试,如果可以打开,就说明Wireshark支持这种格式.然后你就可以去看Wireshark的源码.*.pkt是omnipeek/etherpeek的默认文件格式, ...
- Redis 复制原理及特性
摘要 早期的RDBMS被设计为运行在单个CPU之上,读写操作都由经单个数据库实例完成,复制技术使得数据库的读写操作可以分散在运行于不同CPU之上的独立服务器上,Redis作为一个开源的.优秀的key- ...
- php session之多级目录存储
当选择以文件形式保存session到服务器时,需要制定保存路径.用到php.ini中的session.save_path,其有三种配置写法: session.save_path = "N;/ ...
- AOP技术介绍--(引言)
软件设计因为引入面向对象思想而逐渐变得丰富起来.“一切皆为对象”的精义,使得程序世界所要处理的逻辑简化,开发者可以用一组对象以及这些对象之间的关系将软件系统形象地表示出来.而从对象的定义,进而到模块, ...
- $2019$各种$WC$没去记
\(2019\)各种\(WC\)没去记 太弱了去不了啊. 至少我联赛没退役是吧...(退役感++ 不过这个分数线还是有点让人自闭啊,划线人绝对有毒,有人关照一下空巢老人\(mona\)喵? 这里大概是 ...
- linux运维、架构之路-MySQL主从复制
一.MySQL主从复制原理图 MySQL主从复制原理:实现主从复制原理是三个线程完成的,主的I/O线程,备的I/O线程与SQL线程 1.首先主库db01需要开启binlog.授权一个replicat ...
- iview之——table中嵌套input、select等
使用iview在table中嵌入button是比较常见的需求,但是在table中嵌入input或者select你是否考虑过呢?本文用实例介绍input和select在table中的嵌套. 理解tabl ...
- 在linux中 部署 mongo 数据库服务端
1 首先需要一台linux服务器(我用的redhat linux,其它的也大同小异), 玩一玩的话,推荐亚马逊上面去创建一个免费的linux服务器,有关具体创建linux服务器不在这赘述. https ...