week8:
5.27

1.做CNN practical[1]里的example1,了解CNN模块中的每一个部分

(1)卷积层的卷积过程,输入输出维度变化(2)ReLU(3)Pooling层(4)Normalization

ReLU

Pooling

Normalization

2.做CNN practical[1]里的example2,了解BP算法求导原理(参考[4])

(1)损失函数(2)链式求导法则(3)对参数求导用于参数的迭代跟新(4)对每层输出的求导用于参数求导的方便,求导的trick

(5)正向计算,反向求导,CNN主要的计算过程

5.28

1.看VGGgroup的CNN网络net里的每一层,求出的res的每一层,结合example2及MatConvNet的manual[2],深入理解CNN正向反向的每一步过程

2.做CNN practical里的example3,CNN应用的具体应用时的过程

(1)损失函数该如何设置:正则化项,极小化函数(2)正向求输出,评估误差给出反馈,反向求迭代步长(3)其他预处理过程

预处理过程的理解:

3.跟师兄探讨BP的过程

5.29

1.测试FPID数据集[3]Q2、T8提取deepcnn16(VGG组在ImageNet上训练得到)的layer36特征的效果

提升效果并不明显,说明原因不在于网络性能,考虑暂缓fine-tune。

2.和师兄讨论了改进的办法,关注了检索结果里false postive中背景影响及图片旋转带来的影响很大,决定将数据手动裁剪,旋转。

3.手动裁剪数据,opencv写的裁图工具。这里就不贴代码了

opencv也可以调用鼠标响应,左键选择RIO,右键确定。感觉自己完全可以下一个截图工具了

5.30(在学校)

1.测试旋转、及裁剪带来的性能影响

[1]http://www.robots.ox.ac.uk/~vgg/practicals/cnn/index.html#part-4-learning-a-character-cnn

[2]http://www.vlfeat.org/matconvnet/matconvnet-manual.pdf

[3]https://diuf.unifr.ch/diva/FPID/

[4]http://www.cnblogs.com/wentingtu/archive/2012/06/05/2536425.html

【week8 in ricoh】 Learning CNN的更多相关文章

  1. 【神经网络与深度学习】【计算机视觉】RCNN- 将CNN引入目标检测的开山之作

    转自:https://zhuanlan.zhihu.com/p/23006190?refer=xiaoleimlnote 前面一直在写传统机器学习.从本篇开始写一写 深度学习的内容. 可能需要一定的神 ...

  2. 【原】Learning Spark (Python版) 学习笔记(三)----工作原理、调优与Spark SQL

    周末的任务是更新Learning Spark系列第三篇,以为自己写不完了,但为了改正拖延症,还是得完成给自己定的任务啊 = =.这三章主要讲Spark的运行过程(本地+集群),性能调优以及Spark ...

  3. 【深度学习系列3】 Mariana CNN并行框架与图像识别

    [深度学习系列3] Mariana CNN并行框架与图像识别 本文是腾讯深度学习系列文章的第三篇,聚焦于腾讯深度学习平台Mariana中深度卷积神经网络Deep CNNs的多GPU模型并行和数据并行框 ...

  4. 我在 B 站学机器学习(Machine Learning)- 吴恩达(Andrew Ng)【中英双语】

    我在 B 站学机器学习(Machine Learning)- 吴恩达(Andrew Ng)[中英双语] 视频地址:https://www.bilibili.com/video/av9912938/ t ...

  5. 【重磅干货整理】机器学习(Machine Learning)与深度学习(Deep Learning)资料汇总

    [重磅干货整理]机器学习(Machine Learning)与深度学习(Deep Learning)资料汇总 .

  6. 【论文阅读】Learning Spatial Regularization with Image-level Supervisions for Multi-label Image Classification

    转载请注明出处:https://www.cnblogs.com/White-xzx/ 原文地址:https://arxiv.org/abs/1702.05891 Caffe-code:https:// ...

  7. 【AI in 美团】深度学习在OCR中的应用

    AI(人工智能)技术已经广泛应用于美团的众多业务,从美团App到大众点评App,从外卖到打车出行,从旅游到婚庆亲子,美团数百名最优秀的算法工程师正致力于将AI技术应用于搜索.推荐.广告.风控.智能调度 ...

  8. 【机器学习PAI实战】—— 玩转人工智能之综述

    摘要: 基于人工智能火热的大背景下,通过阿里云的机器学习平台PAI在真实场景中的应用,详细阐述相关算法及使用方法,力求能够让读者读后能够马上动手利用PAI搭建属于自己的机器学习实用方案,真正利用PAI ...

  9. Python基础——数据类型与基本运算【主要为除法】

    Python版本:3.6.2  操作系统:Windows  作者:SmallWZQ 无论是Python 3.x版本还是2.x版本,Python均支持多种数据类型,能够直接处理的数据类型包括Int类型. ...

随机推荐

  1. Flutter日曆國際化

    Flutter自带的日期选择器是showDatePicker,时间选择器是showTimePicker. 这两个选择器默认的显示效果都是英文的,我们是在中国,那么就需要将其显示成中文版的,这就涉及到F ...

  2. python在mapreduce运行Wordcount程序

    首先脚本文件: mapper.py: #!/usr/bin/env python import sys for line in sys.stdin: line = line.strip() words ...

  3. 剑指Offer-51.构建乘积数组(C++/Java)

    题目: 给定一个数组A[0,1,...,n-1],请构建一个数组B[0,1,...,n-1],其中B中的元素B[i]=A[0]*A[1]*...*A[i-1]*A[i+1]*...*A[n-1].不能 ...

  4. Vue通信的10种方式

    1.10种通信方式 10种:https://juejin.im/post/5bd18c72e51d455e3f6e4334 2.除此之外,还有children和ref. 需要注意 $children  ...

  5. spring boot jar的支持

  6. VS2010提示error TRK0002: Failed to execute command

    转自VC错误:http://www.vcerror.com/?p=277 问题描述: windows8自动更新Microsoft .NET Framework 3.5和4.5.1安全更新程序,今天用V ...

  7. 三线SWD模式Jlink

    三线SWD模式Jlink   在公司实习,部门经理让我做一个USB-CAN的适配器. 在网上找资料,找到一个开源的USB-CAN的适配器的资料. 采用的是CP2102芯片实现USB转串口.STM32作 ...

  8. 软件-Axure:Axure RP

    ylbtech-软件-Axure:Axure RP Axure RP是一款专业的快速原型设计工具.Axure(发音:Ack-sure),代表美国Axure公司:RP则是Rapid Prototypin ...

  9. Problem accessing /jenkins/. Reason:

    这是一个Jenkins的Bug.临时解决方法是:在浏览器中手工输入:http://<ip>:<port>.不要访问"/jenkins"这个路径.

  10. centos7运行yum报如下提示:Run "yum repolist all" to see the repos you have

    centos7运行yum报如下提示: There are no enabled repos. Run "yum repolist all" to see the repos you ...