python 常用技巧 — 列表(list)
目录:
1. 嵌套列表对应位置元素相加 (add the corresponding elements of nested list)
2. 多个列表对应位置相加(add the corresponding elements of several lists)
3. 列表中嵌套元组对应位置相加 (python sum corresponding position in list neseted tuple)
4. 判断列表中所有元素是否都是0 (python check if all element in list is zero)
5. 寻找列表中所有最大值的位置 (python find all position of maximum value in list)
6. 计算列表中出现次数最多的所有项 (python get all value with the highest occurrence in list)
7. 生成等间隔列表 (python create list in same space)
8. 寻找嵌套列表的最大值 (python find max value in nested list)
9. 找到列表中的众数 (python find mode in list)
10. 列表按照某个规则排序 (python sort a list according to an regulation)
11. 列表寻找大于0位置的开始索引和结束索引 (python find the starting and ending indices of values greater than 0 in a list)
12. 列表里面元素所有是否满足某一个条件 (python check if all element of a list matches a condition)
13. 对两个列表一起进行排序 (python sort two list in same order)
14. 把嵌套的列表平铺成一个列表 (python convert nested list to a flat list)
内容:
1. 嵌套列表对应位置元素相加 (add the corresponding elements of nested list)
方法1:
>>> lis=[[1,2,3,4,5],[2,3,4,5,6],[3,4,5,6,7]]
>>> [sum(x) for x in zip(*lis)]
[6, 9, 12, 15, 18]
方法2:
>>> seq = np.array([
... [1,2,3,4,5],
... [2,3,4,5,6],
... [3,4,5,6,7]])
>>> np.sum(seq,axis=0)
array([ 6, 9, 12, 15, 18])
2. 多个列表对应位置相加(add the corresponding elements of several lists)
方法1:
a = [1,2,3,4,5]
b = [2,3,4,5,6]
c = [3,4,5,6,7]
[sum(n) for n in zip(*[a, b, c])]
方法2:
>>> seq = np.array([
... [1,2,3,4,5],
... [2,3,4,5,6],
... [3,4,5,6,7]])
>>> np.sum(seq,axis=0)
array([ 6, 9, 12, 15, 18])
3. 列表中嵌套元组对应位置相加 (python sum corresponding position in list neseted tuple)
https://stackoverflow.com/questions/14180866/sum-each-value-in-a-list-of-tuples
方法1:
l = [(1, 2), (3, 4), (5, 6), (7, 8), (9, 0)]
[sum(x) for x in zip(*l)]
[25, 20]
方法2:
map(sum, zip(*l))
[25, 20]
4. 判断列表中所有元素是否都是0 (python check if all element in list is zero)
In [62]: b=[0, 0, 0, 0, 0, 0, 0, 0, 0]
In [63]: all(i==0 for i in b)
Out[63]: True
5. 寻找列表中所有最大值的位置 (python find all position of maximum value in list)
https://stackoverflow.com/questions/3989016/how-to-find-all-positions-of-the-maximum-value-in-a-list
方法1:
a = [32, 37, 28, 30, 37, 25, 27, 24, 35, 55, 23, 31, 55, 21, 40, 18, 50, 35, 41, 49, 37, 19, 40, 41, 31]
>>> m = max(a)
>>> [i for i, j in enumerate(a) if j == m]
[9, 12]
方法2:
m = max(a)
[i for i in range(len(a)) if a[i] == m]
6. 计算列表中出现次数最多的所有项 (python get all value with the highest occurrence in list)
In [10]: from collections import Counter
In [11]: a=[2, 3, 5, 1, 6, 1, 5]
In [12]: ct = Counter(a)
In [13]: ct
Out[13]: Counter({1: 2, 2: 1, 3: 1, 5: 2, 6: 1})
In [14]: max_value = max(ct.values())
In [15]: max_value
Out[15]: 2
In [16]: sorted(key for key, value in ct.items() if value == max_value)
Out[16]: [1, 5]
7. 生成等间隔列表 (python create list in same space)
方法1:
In [3]: [3+x*5 for x in range(10)]
Out[3]: [3, 8, 13, 18, 23, 28, 33, 38, 43, 48]
方法2:
In [46]: import numpy as np
In [47]: np.linspace(0,5,10)
Out[47]:
array([ 0. , 0.55555556, 1.11111111, 1.66666667, 2.22222222,
2.77777778, 3.33333333, 3.88888889, 4.44444444, 5. ])
方法3:
>>> a = np.arange(0,5, 0.5) # returns a numpy array
>>> a
array([ 0. , 0.5, 1. , 1.5, 2. , 2.5, 3. , 3.5, 4. , 4.5]
8. 寻找嵌套列表的最大值 (python find max value in nested list)
https://stackoverflow.com/questions/33286642/finding-the-largest-number-in-a-nested-list-in-python
In [4]: lists = [[21, 34, 345, 2], [555, 22, 6, 7], [94, 777, 65, 1], [23, 54, 12, 666]] In [5]: list(map(max, lists))
Out[5]: [345, 555, 777, 666] In [6]: max(map(max, lists))
Out[6]: 777
9. 找到列表中的众数 (python find mode in list)
https://stackoverflow.com/questions/10797819/finding-the-mode-of-a-list
In [1]: from statistics import mode In [2]: list = [2,3,4,5,64,3,2,3,3,3] In [3]: mode(list)
Out[3]: 3
10. 列表按照某个规则排序 (python sort a list according to an regulation)
https://www.geeksforgeeks.org/python-sort-list-according-second-element-sublist/
注意:区分sort和sorted,是否是原地修改列表(in place)
In [58]: a=[('rishav', 10), ('akash', 5), ('ram', 20), ('gaurav', 15)] In [59]: b=sorted(a, key = lambda x: x[1], reverse=True) In [60]: a
Out[60]: [('rishav', 10), ('akash', 5), ('ram', 20), ('gaurav', 15)] In [61]: b
Out[61]: [('ram', 20), ('gaurav', 15), ('rishav', 10), ('akash', 5)] In [62]: a.sort(key = lambda x: x[1], reverse=True) In [63]: a
Out[63]: [('ram', 20), ('gaurav', 15), ('rishav', 10), ('akash', 5)]
11. 列表寻找大于0位置的开始索引和结束索引(python find the starting and ending indices of values greater than 0 in a list)
cross = [0, 7, 5, 8, 0, 0, 0, 7, 5, 0]
def first_and_last_index(cross):
result = []
foundstart = False
foundend = False
startindex = 0
endindex = 0
for i in range(0, len(cross)):
if cross[i] != 0:
if not foundstart:
foundstart = True
startindex = i
else:
if foundstart:
foundend = True
endindex = i - 1 if foundend:
result.append((startin[(1, 3), (7, 8)]dex, endindex))
foundstart = False
foundend = False
startindex = 0
endindex = 0 if foundstart:
result.append((startindex, len(cross)-1))
return result result = first_and_last_index(cross)
print(result)
[(1, 3), (7, 8)]
[(1, 3), (7, 8)]
12. 列表里面元素所有是否满足某一个条件 (python check if all element of a list matches a condition)
>>> items = [[1, 2, 0], [1, 2, 0], [1, 2, 0]]
>>> all(item[2] == 0 for item in items)
True
>>> items = [[1, 2, 0], [1, 2, 1], [1, 2, 0]]
>>> all(item[2] == 0 for item in items)
False
如果想判断至少存在一个这样的元素,则使用下面语句
>>> any(item[2] == 0 for item in items)
True
13. 对两个列表一起进行排序 (python sort two list in same order)
In [197]: a
Out[197]: [(38, 750, 574, 788), (39, 301, 575, 559), (39, 182, 254, 281)] In [198]: b
Out[198]: [(291, 778), (306, 429), (151, 230)] In [199]: c, d =zip(*sorted(zip(a, b))) In [200]: c
Out[200]: ((38, 750, 574, 788), (39, 182, 254, 281), (39, 301, 575, 559)) In [201]: d
Out[201]: ((291, 778), (151, 230), (306, 429))
14. 把嵌套的列表平铺成一个列表 (python convert nested list to a flat list)
https://djangocentral.com/nested-list-to-flat-list/
In [223]: a=[[(86, 68, 414, 99), (309, 132, 435, 144), (94, 185, 410, 230)], [], [], [(1, 2, 3, 4)], []]
// 方法1
In [224]: import functools
...: import operator
...: In [225]: functools.reduce(operator.concat, a)
Out[225]: [(86, 68, 414, 99), (309, 132, 435, 144), (94, 185, 410, 230), (1, 2, 3, 4)]
// 方法2
In [226]: from functools import reduce In [227]: reduce(lambda x, y: x+y, a)
Out[227]: [(86, 68, 414, 99), (309, 132, 435, 144), (94, 185, 410, 230), (1, 2, 3, 4)]
// 方法3
In [228]: from itertools import chain In [229]: list(chain.from_iterable(a))
Out[229]: [(86, 68, 414, 99), (309, 132, 435, 144), (94, 185, 410, 230), (1, 2, 3, 4)]
15:
python 常用技巧 — 列表(list)的更多相关文章
- python 常用技巧 — 字典 (dictionary)
目录: 1. python 相加字典所有的键值 (python sum all values in dictionary) 2. python 两个列表分别组成字典的键和值 (python two l ...
- python常用技巧
1,关于tab键与4个空格: 由于不同平台间,tab键值设置有所区别,据相关介绍,官方在缩进方面推荐使用4个空格.方便起见,可设置tab自动转换为4个空格. 1.1在pycharm中: 通过fi ...
- python 常用技巧
一.字符串与数值的转换 Python中字符串转换为数值: str_num = '99' num = int(str_num) 整型数转换为字符串: num = 99 str_num = str(num ...
- python开发技巧---列表、字典、集合值的过滤
主要学习列表,字典,集合表达式的应用: 列表的解析式: 生成一个随机列表: In [4]: datalist = [randint(-10,10) for _ in range(10)] In [5] ...
- python常用技巧 — 杂
目录: 1. 找到字符串中的所有数字(python find digits in string) 2. python 生成连续的浮点数(如 0.1, 0.2, 0.3, 0.4, ... , 0.9) ...
- python 常用技巧 — 数组 (array)
目录: 1. 数组每一行除以这一行的总数(numpy divide row by row sum) 2. 数组每一行或者每一列求平均 (python average array columns or ...
- #1 Python灵活技巧
前言 Python基础系列博文已顺利结束,从这一篇开始将进入探索更加高级的Python用法,Python进阶系列文章将包含面向对象.网络编程.GUI编程.线程和进程.连接数据库等.不过在进阶之前,先来 ...
- Python SQLAlchemy基本操作和常用技巧包含大量实例,非常好python
http://www.makaidong.com/%E8%84%9A%E6%9C%AC%E4%B9%8B%E5%AE%B6/28053.shtml "Python SQLAlchemy基本操 ...
- python算法常用技巧与内置库
python算法常用技巧与内置库 近些年随着python的越来越火,python也渐渐成为了很多程序员的喜爱.许多程序员已经开始使用python作为第一语言来刷题. 最近我在用python刷题的时候想 ...
随机推荐
- 一次Linux服务器空间满的随笔解决记录
昨天突然无法上传文件到服务器上的,FTP工具总是到99%就卡住了.查了一下说可能是服务器满了. 赶紧用 df -h 命令查看空间使用情况.果然100%了. 想想上次查询才不到50%,怎么突然就满了了呢 ...
- JavaSE---JDK提供的命令行工具---javap
1.javap 1.1 javap是JDK自带的反解析工具: 1.2 作用:就是根据class字节码文件,反解析出 当前类 对应的code区(汇编指令).本地变量表.异常表和代码行偏移量映射 ...
- hihocoder 1014: Trie树(Trie树模板题)
题目链接 #include<bits/stdc++.h> using namespace std; ; struct T { int num; T* next[]; T() { num=; ...
- 51nod 1714:B君的游戏(博弈 sg打表)
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1714 nim游戏的一个变形,需要打出sg函数的表 #incl ...
- vfs的super block
super block这个数据结构,乃至super block在磁盘上的位置,是哪里的规定? 没规定,1k偏移只是ext文件系统.但是像fat,它们第0扇区后就是保留扇区,但linux一样要识别它们. ...
- 4412 i2c驱动
1.Linux主机驱动和外设驱动分离思想 外设驱动→API→主机驱动→板机逻辑--具体的i2c设备(camera,ts,eeprom等等) 2.主机驱动 根据控制器硬件手册,操作具体的寄存器,产生波形 ...
- HDU 5667 构造矩阵快速幂
HDU 5667 构造矩阵快速幂 题目描述 解析 我们根据递推公式 设 则可得到Q的指数关系式 求Q构造矩阵 同时有公式 其中φ为欧拉函数,且当p为质数时有 代码 #include <cstdi ...
- 九、async、future、packaged_task、promise
std::async.std::future创建后台任务并返回值. 希望线程返回一个值. std::async是个函数模板,用来启动一个异步任务,返回一个std::future对象 异步任务:自动创建 ...
- LR之分析
1.Errors(错误统计) 每秒错误数:数值越小越好,通过这个图可以知道,当负载增加的时候,定位何时系统在负载下开始不稳定甚至出错. 2.Transaction(事务) average transa ...
- JAVA中STL使用
Vector:和c++的vector使用方法类似. Vector<Integer> vec=new Vector<> (); ArrayList:Java.util.Array ...