题目传送门

https://lydsy.com/JudgeOnline/problem.php?id=4244

https://loj.ac/problem/2878

题解

挺妙的一道题。

一开始一直往最短路上面想,然后怎么想发现都没有用。

然后就又开始自闭了。最后又去拜读题解了。(今天怎么读了两次题解啊,没救了没救了

一条合法的路线一定是从 \(0\) 到 \(n + 1\) 的链上套了无数个环。每一个邮戳台至少被一个环经过。

经过邮戳台的方式有 \(4\) 类:

  1. 上行 -> 邮戳台 -> 下行,费用为 \(u+e\)
  2. 下行 -> 邮戳台 -> 上行,费用为 \(d+v\)
  3. 上行 -> 邮戳台 -> 上行,费用为 \(u+v\)
  4. 下行 -> 邮戳台 -> 下行,费用为 \(d+e\)

其中第一类和第二类可以互相之间构成大环(跨越了两个邮戳台为大环)。

对于一个环,可以发现从路程上,第一类一定出现在第二类的前面。但是,从位置上,第二类一定出现在第一类的前面。于是,我们令 \((\) 表示第二类环,\()\) 表示第一类环。于是合法的路径是一个合法的括号序列。另外,对于第 \(4\) 类,因为是从下行台来的,所以之前必须有一个 \((\)。

然后,令 \(dp[i][j]\) 表示前 \(i\) 个位置,有 \(j\) 个不匹配的 \((\) 的最优解。直接转移就可以了。

注意第一二种情况可以多次使用,所以是一个完全背包。

最后加上从 \(0\) 到 \(n + 1\) 的链的长度。


代码如下,时间复杂度 \(O(n^2)\)。

#include<bits/stdc++.h>

#define fec(i, x, y) (int i = head[x], y = g[i].to; i; i = g[i].ne, y = g[i].to)
#define dbg(...) fprintf(stderr, __VA_ARGS__)
#define File(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
#define fi first
#define se second
#define pb push_back template<typename A, typename B> inline char smax(A &a, const B &b) {return a < b ? a = b, 1 : 0;}
template<typename A, typename B> inline char smin(A &a, const B &b) {return b < a ? a = b, 1 : 0;} typedef long long ll; typedef unsigned long long ull; typedef std::pair<int, int> pii; template<typename I> inline void read(I &x) {
int f = 0, c;
while (!isdigit(c = getchar())) c == '-' ? f = 1 : 0;
x = c & 15;
while (isdigit(c = getchar())) x = (x << 1) + (x << 3) + (c & 15);
f ? x = -x : 0;
} const int N = 3000 + 7;
const int INF = 0x3f3f3f3f; int n, t;
int u[N], v[N], d[N], e[N];
int dp[N][N]; inline void work() {
memset(dp, 0x3f, sizeof(dp)), dp[0][0] = 0;
for (int i = 1; i <= n; ++i) {
const int &u = ::u[i], &v = ::v[i], &d = ::d[i], &e = ::e[i];
for (int j = 0; j < n; ++j) smin(dp[i][j], dp[i - 1][j + 1] + u + e);
for (int j = 0; j <= n; ++j) smin(dp[i][j], dp[i - 1][j] + u + v);
for (int j = 1; j <= n; ++j) smin(dp[i][j], dp[i - 1][j - 1] + v + d);
for (int j = 1; j <= n; ++j) smin(dp[i][j], dp[i - 1][j] + d + e);
for (int j = 1; j <= n; ++j) smin(dp[i][j], dp[i][j - 1] + v + d);
for (int j = n - 1; ~j; --j) smin(dp[i][j], dp[i][j + 1] + u + e);
for (int j = 0; j <= n; ++j) if (dp[i][j] != INF) dp[i][j] += t * j * 2;
}
printf("%d\n", dp[n][0] + (n + 1) * t);
} inline void init() {
read(n), read(t);
for (int i = 1; i <= n; ++i) read(u[i]), read(v[i]), read(d[i]), read(e[i]);
} int main() {
#ifdef hzhkk
freopen("hkk.in", "r", stdin);
#endif
init();
work();
fclose(stdin), fclose(stdout);
return 0;
}

bzoj4244 & loj2878. 「JOISC 2014 Day2」邮戳拉力赛 括号序列+背包的更多相关文章

  1. [LOJ#2878]. 「JOISC 2014 Day2」邮戳拉力赛[括号序列dp]

    题意 题目链接 分析 如果走到了下行车站就一定会在前面的某个车站走回上行车站,可以看成是一对括号. 我们要求的就是 类似 代价最小的括号序列匹配问题,定义 f(i,j) 表示到 i 有 j 个左括号没 ...

  2. LOJ #2877. 「JOISC 2014 Day2」交朋友 并查集+BFS

    这种图论问题都挺考验小思维的. 首先,我们把从 $x$ 连出去两条边的都合并了. 然后再去合并从 $x$ 连出去一条原有边与一条新边的情况. 第一种情况直接枚举就行,第二种情况来一个多源 bfs 即可 ...

  3. LOJ #2876. 「JOISC 2014 Day2」水壶 BFS+最小生成树+倍增LCA

    非常好的一道图论问题. 显然,我们要求城市间的最小生成树,然后查询路径最大值. 然后我们有一个非常神的处理方法:进行多源 BFS,处理出每一个城市的管辖范围. 显然,如果两个城市的管辖范围没有交集的话 ...

  4. 【LOJ】#3034. 「JOISC 2019 Day2」两道料理

    LOJ#3034. 「JOISC 2019 Day2」两道料理 找出最大的\(y_{i}\)使得\(sumA_{i} + sumB_{y_i} \leq S_{i}\) 和最大的\(x_{j}\)使得 ...

  5. 【LOJ】#3033. 「JOISC 2019 Day2」两个天线

    LOJ#3033. 「JOISC 2019 Day2」两个天线 用后面的天线更新前面的天线,线段树上存历史版本的最大值 也就是线段树需要维护历史版本的最大值,后面的天线的标记中最大的那个和最小的那个, ...

  6. 「JOISC 2014 Day1」巴士走读

    「JOISC 2014 Day1」巴士走读 将询问离线下来. 从终点出发到起点. 由于在每个点(除了终点)的时间被过来的边固定,因此如果一个点不被新的边更新,是不会发生变化的. 因此可以按照时间顺序, ...

  7. 「JOISC 2014 Day1」 历史研究

    「JOISC 2014 Day1」 历史研究 Solution 子任务2 暴力,用\(cnt\)记录每种权值出现次数. 子任务3 这不是一个尺取吗... 然后用multiset维护当前的区间,动态加, ...

  8. loj2880「JOISC 2014 Day3」稻草人

    题目链接:bzoj4237 ​ loj2880 考虑\(cdq\)分治,按\(x\)坐标排序,于是问题变成统计左下角在\([l,mid]\),右上角在\([mid+1,r]\)的矩形数量 我们先考虑固 ...

  9. LOJ#2882. 「JOISC 2014 Day4」两个人的星座(计算几何)

    题面 传送门 题解 我们发现如果两个三角形相离,那么这两个三角形一定存在两条公切线 那么我们可以\(O(n^2)\)枚举其中一条公切线,然后可以暴力\(O(n^3)\)计算 怎么优化呢?我们可以枚举一 ...

随机推荐

  1. 从Word文档粘贴内容至Web编辑器的问题

    Chrome+IE默认支持粘贴剪切板中的图片,但是我要发布的文章存在word里面,图片多达数十张,我总不能一张一张复制吧?Chrome高版本提供了可以将单张图片转换在BASE64字符串的功能.但是无法 ...

  2. socket函数库简单封装

    #pragma once #ifndef WINSOCK_H #include<WinSock2.h> #pragma comment(lib,"ws2_32.lib" ...

  3. [luogu]P1133 教主的花园[DP]

    [luogu]P1133 教主的花园 ——!x^n+y^n=z^n 题目描述 教主有着一个环形的花园,他想在花园周围均匀地种上n棵树,但是教主花园的土壤很特别,每个位置适合种的树都不一样,一些树可能会 ...

  4. 201903-2 CCF 二十四点

    题面: 考场写的30分== #include<bits/stdc++.h> using namespace std; stack<int>st; stack<char&g ...

  5. 去掉xcode中警告的一些经验

    1.编译时,编译警告忽略掉某些文件 只需在在文件的Compiler Flags 中加入 -w 参数,例如: 2.编译时,编译警告忽略掉某段代码 #pragma clang diagnostic pus ...

  6. python之面向过程,函数式编程,面向对象浅析

    python编程有面向过程.面向函数.面向对象三种,那么他们区别在哪呢?这个问题,让我想起我在学习编程的时候,我的老师给我举的例子.分享给大家. 面向过程就是将编程当成是做一件事,要按步骤完成! 比如 ...

  7. mysql_DML_select_union

    使用union可以将多个select 语句的查询结果集组合成一个结果集.select 字段列表1 from table1union [all]select 字段列表2 from table2...说明 ...

  8. 解读:nginx的一个神秘配置worker_cpu_affinity

    今天在查看nginx的相关知识的时候发现了一个nginx之前不认识的配置:worker_cpu_affinity. nginx默认是没有开启利用多核cpu的配置的.需要通过增加worker_cpu_a ...

  9. parameterType和resultType配置错误

    自己在写mapper.xml的时候 吧parameterType和resultType的两个类搞混了 对调了一下  以至于查询了半天查询不出结果 <select id="findPat ...

  10. 最小生成树,Prim算法实现

    最小生成树 所谓最小生成树,就是一个图的极小连通子图,它包含原图的所有顶点,并且所有边的权值之和尽可能的小. 首先看看第一个例子,有下面这样一个带权图: 它的最小生成树是什么样子呢?下图绿色加粗的边可 ...