题目传送门

https://lydsy.com/JudgeOnline/problem.php?id=4244

https://loj.ac/problem/2878

题解

挺妙的一道题。

一开始一直往最短路上面想,然后怎么想发现都没有用。

然后就又开始自闭了。最后又去拜读题解了。(今天怎么读了两次题解啊,没救了没救了

一条合法的路线一定是从 \(0\) 到 \(n + 1\) 的链上套了无数个环。每一个邮戳台至少被一个环经过。

经过邮戳台的方式有 \(4\) 类:

  1. 上行 -> 邮戳台 -> 下行,费用为 \(u+e\)
  2. 下行 -> 邮戳台 -> 上行,费用为 \(d+v\)
  3. 上行 -> 邮戳台 -> 上行,费用为 \(u+v\)
  4. 下行 -> 邮戳台 -> 下行,费用为 \(d+e\)

其中第一类和第二类可以互相之间构成大环(跨越了两个邮戳台为大环)。

对于一个环,可以发现从路程上,第一类一定出现在第二类的前面。但是,从位置上,第二类一定出现在第一类的前面。于是,我们令 \((\) 表示第二类环,\()\) 表示第一类环。于是合法的路径是一个合法的括号序列。另外,对于第 \(4\) 类,因为是从下行台来的,所以之前必须有一个 \((\)。

然后,令 \(dp[i][j]\) 表示前 \(i\) 个位置,有 \(j\) 个不匹配的 \((\) 的最优解。直接转移就可以了。

注意第一二种情况可以多次使用,所以是一个完全背包。

最后加上从 \(0\) 到 \(n + 1\) 的链的长度。


代码如下,时间复杂度 \(O(n^2)\)。

#include<bits/stdc++.h>

#define fec(i, x, y) (int i = head[x], y = g[i].to; i; i = g[i].ne, y = g[i].to)
#define dbg(...) fprintf(stderr, __VA_ARGS__)
#define File(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
#define fi first
#define se second
#define pb push_back template<typename A, typename B> inline char smax(A &a, const B &b) {return a < b ? a = b, 1 : 0;}
template<typename A, typename B> inline char smin(A &a, const B &b) {return b < a ? a = b, 1 : 0;} typedef long long ll; typedef unsigned long long ull; typedef std::pair<int, int> pii; template<typename I> inline void read(I &x) {
int f = 0, c;
while (!isdigit(c = getchar())) c == '-' ? f = 1 : 0;
x = c & 15;
while (isdigit(c = getchar())) x = (x << 1) + (x << 3) + (c & 15);
f ? x = -x : 0;
} const int N = 3000 + 7;
const int INF = 0x3f3f3f3f; int n, t;
int u[N], v[N], d[N], e[N];
int dp[N][N]; inline void work() {
memset(dp, 0x3f, sizeof(dp)), dp[0][0] = 0;
for (int i = 1; i <= n; ++i) {
const int &u = ::u[i], &v = ::v[i], &d = ::d[i], &e = ::e[i];
for (int j = 0; j < n; ++j) smin(dp[i][j], dp[i - 1][j + 1] + u + e);
for (int j = 0; j <= n; ++j) smin(dp[i][j], dp[i - 1][j] + u + v);
for (int j = 1; j <= n; ++j) smin(dp[i][j], dp[i - 1][j - 1] + v + d);
for (int j = 1; j <= n; ++j) smin(dp[i][j], dp[i - 1][j] + d + e);
for (int j = 1; j <= n; ++j) smin(dp[i][j], dp[i][j - 1] + v + d);
for (int j = n - 1; ~j; --j) smin(dp[i][j], dp[i][j + 1] + u + e);
for (int j = 0; j <= n; ++j) if (dp[i][j] != INF) dp[i][j] += t * j * 2;
}
printf("%d\n", dp[n][0] + (n + 1) * t);
} inline void init() {
read(n), read(t);
for (int i = 1; i <= n; ++i) read(u[i]), read(v[i]), read(d[i]), read(e[i]);
} int main() {
#ifdef hzhkk
freopen("hkk.in", "r", stdin);
#endif
init();
work();
fclose(stdin), fclose(stdout);
return 0;
}

bzoj4244 & loj2878. 「JOISC 2014 Day2」邮戳拉力赛 括号序列+背包的更多相关文章

  1. [LOJ#2878]. 「JOISC 2014 Day2」邮戳拉力赛[括号序列dp]

    题意 题目链接 分析 如果走到了下行车站就一定会在前面的某个车站走回上行车站,可以看成是一对括号. 我们要求的就是 类似 代价最小的括号序列匹配问题,定义 f(i,j) 表示到 i 有 j 个左括号没 ...

  2. LOJ #2877. 「JOISC 2014 Day2」交朋友 并查集+BFS

    这种图论问题都挺考验小思维的. 首先,我们把从 $x$ 连出去两条边的都合并了. 然后再去合并从 $x$ 连出去一条原有边与一条新边的情况. 第一种情况直接枚举就行,第二种情况来一个多源 bfs 即可 ...

  3. LOJ #2876. 「JOISC 2014 Day2」水壶 BFS+最小生成树+倍增LCA

    非常好的一道图论问题. 显然,我们要求城市间的最小生成树,然后查询路径最大值. 然后我们有一个非常神的处理方法:进行多源 BFS,处理出每一个城市的管辖范围. 显然,如果两个城市的管辖范围没有交集的话 ...

  4. 【LOJ】#3034. 「JOISC 2019 Day2」两道料理

    LOJ#3034. 「JOISC 2019 Day2」两道料理 找出最大的\(y_{i}\)使得\(sumA_{i} + sumB_{y_i} \leq S_{i}\) 和最大的\(x_{j}\)使得 ...

  5. 【LOJ】#3033. 「JOISC 2019 Day2」两个天线

    LOJ#3033. 「JOISC 2019 Day2」两个天线 用后面的天线更新前面的天线,线段树上存历史版本的最大值 也就是线段树需要维护历史版本的最大值,后面的天线的标记中最大的那个和最小的那个, ...

  6. 「JOISC 2014 Day1」巴士走读

    「JOISC 2014 Day1」巴士走读 将询问离线下来. 从终点出发到起点. 由于在每个点(除了终点)的时间被过来的边固定,因此如果一个点不被新的边更新,是不会发生变化的. 因此可以按照时间顺序, ...

  7. 「JOISC 2014 Day1」 历史研究

    「JOISC 2014 Day1」 历史研究 Solution 子任务2 暴力,用\(cnt\)记录每种权值出现次数. 子任务3 这不是一个尺取吗... 然后用multiset维护当前的区间,动态加, ...

  8. loj2880「JOISC 2014 Day3」稻草人

    题目链接:bzoj4237 ​ loj2880 考虑\(cdq\)分治,按\(x\)坐标排序,于是问题变成统计左下角在\([l,mid]\),右上角在\([mid+1,r]\)的矩形数量 我们先考虑固 ...

  9. LOJ#2882. 「JOISC 2014 Day4」两个人的星座(计算几何)

    题面 传送门 题解 我们发现如果两个三角形相离,那么这两个三角形一定存在两条公切线 那么我们可以\(O(n^2)\)枚举其中一条公切线,然后可以暴力\(O(n^3)\)计算 怎么优化呢?我们可以枚举一 ...

随机推荐

  1. Python全栈开发,Day1

    一.Python介绍及版本 Python崇尚优美.清晰.简单,是一个优秀并广泛使用的语言. 目前Python主要应用领域: 云计算:云计算最火的语言 WEB开发:众多优秀的WEB框架,众多大型网站均为 ...

  2. [USACO2011 Feb]Best Parenthesis

    Time Limit: 10 Sec Memory Limit: 128 MB Description Recently, the cows have been competing with stri ...

  3. shp文件导入数据库

    数据库服务器(引擎) sql server oracle nosql sql语句... 从数据库端导入:新建数据库,导入shp文件 发布地图服务 jdbc.sdk

  4. HDU6415 Rikka with Nash Equilibrium

    HDU6415 Rikka with Nash Equilibrium 找规律 + 大数 由于规律会被取模破坏,所以用了java 找出规律的思路是: 对于一个n*m的矩阵构造,我先考虑n*1的构造,很 ...

  5. EZOJ #387字符串

    分析 似乎ttl的模拟赛t3总是折半搜索? 先把所有串转化为每个字母的0/1状态 之后我们将所有字符串分为两半 分别枚举状态 我们发现只有左右两边的字母状态相等才能保证这个集合合法 所以我们在搜左半边 ...

  6. node中console自定义样式

    最近公司的项目一直使用gulpfile打包,项目会有三种项目打包(生产环境)和监听(开发环境)两种过程,同时需要清除文件夹,希望打包时增加提示以便区分,暂时分为上述三种提示打包.监听.清除. 先上co ...

  7. 软件-Jenkins:Jenkins 百科

    ylbtech-软件-Jenkins:Jenkins 百科 Jenkins是一个开源软件项目,是基于Java开发的一种持续集成工具,用于监控持续重复的工作,旨在提供一个开放易用的软件平台,使软件的持续 ...

  8. QQ空间分享网址

    现在大部分网站都在每个界面设计了分享这个功能,但还是有的网页没有(比如 B 站只能分享具体的视频).在原来的 QQ 空间分享的地方已经找不到法自己创建分享.上网一搜有分享的接口,可这个接口是给开发者用 ...

  9. python2.7+RobotFramework的UI自动化环境搭建

    robotFramework是一种比较常见的自动化测试框架,此篇记录环境搭建 目录 1.软件准备 2.执行安装 1.软件准备 python-2.7.15.amd64.msi              ...

  10. 标准标签库JSTL(JSP Standard Tag Library)

    1, 核心标签(最常用, 最重要的) 表达式控制标签 out 输出常量 value---直接赋值 输出变量 default---默认值 escapeXml---控制转义字符(默认为true, 如果需要 ...