题目

BOSS送给小唐一辆车。小唐开着这辆车从PKU出发去ZJU上课了。

众所周知,天朝公路的收费站超多的。经过观察地图,小唐发现从PKU出发到ZJU的所有路径只会有N(2<=N<=300)个不同的中转点,其中有M(max(0, N-100) <=M<=N)个点是天朝的收费站。N个中转点标号为1…N,其中1代表PKU,N代表ZJU。中转点之间总共有E(E<=50,000)条双向边连接。

每个点还有一个附加属性,用0/1标记,0代表普通中转点,1代表收费站。当然,天朝的地图上面是不会直接告诉你第i个点是普通中转点还是收费站的。地图上有P(1<=P<=3,000)个提示,用[u, v, t]表示:[u, v]区间的所有中转点中,至少有t个收费站。数据保证由所有标记得到的每个点的属性是唯一的。

车既然是BOSS送的,自然非比寻常了。车子使用了世界上最先进的DaxiaYayamao引擎,简称DY引擎。DY引擎可以让车子从U瞬间转移到V,只要U和V的距离不超过L(1<=L<=1,000,000),并且U和V之间不能有收费站(小唐良民一枚,所以要是经过收费站就会停下来交完钱再走)。

DY引擎果然是好东西,但是可惜引擎最多只能用K(0<=K<=30)次。

分析

这道题的难点主要在求出哪个点有收费站。

可以把题目分成两部分:

求出哪个点有收费站

这部分用到个很神奇的东西,差分约束系统

设\(s_{i}\)表示在中转点1~i有多少个收费站,

那么对于每个提示[u,v,t],

\(s_{v}-s_{u-1}>=c\),移项得\(s_{u-1}-s_{v}<=-c\)。

但这不足以求出所有的\(s\)值,那么注意隐藏条件:

\(s_{i}-s_{i-1}>=0\),移项得\(s_{i-1}-s_{i}<=0\)

\(s_{i}-s_{i-1}<=1\)

接着对于一条式子“a-b<=c”,给b向a连一条权值为c的有向边,搞一遍spfa就可以了(其中\(s_{n}=m\),显然嘛)

求最短路

先把原图分为k+1层,

搞一遍floyd,求出可以瞬移的路径,

每一层连一条可以瞬移的路径到下一层。

spfa完美收场。

#include <cmath>
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <queue>
const long long maxlongint=21474836470000;
using namespace std;
long long next[2000000],last[2000000],to[2000000],v[2000000],dis[2000000],d[5000000],f[400][400],re[60000][4];
long long a[400][400];
long long n,m,ans,k,l,e,tot;
bool bz[2000000];
long long bj(long long x,long long y,long long z)
{
next[++tot]=last[x];
last[x]=tot;
to[tot]=y;
v[tot]=z;
}
long long spfa(long long x,long long y)
{
memset(bz,true,sizeof(bz));
memset(dis,60,sizeof(dis));
long long head=0,tail=1,g;
dis[x]=y;
d[1]=x;
while(head<tail)
{
g=d[++head];
bz[g]=true;
for(long long i=last[g];i;i=next[i])
{
long long j=to[i];
if(dis[j]>dis[g]+v[i])
{
dis[j]=dis[g]+v[i];
if(bz[j])
{
bz[j]=false;
d[++tail]=j;
}
}
}
}
}
int main()
{
//第一部分
long long o;
scanf("%lld%lld%lld%lld%lld%lld",&n,&m,&e,&o,&l,&k);
memset(f,60,sizeof(f));
for(long long i=1;i<=e;i++)
{
long long x,y,z;
scanf("%lld%lld%lld",&x,&y,&z);
re[i][1]=x;
re[i][2]=y;
re[i][3]=z;
f[x][y]=min(z,f[x][y]);
f[y][x]=f[x][y];
}
for(long long i=1;i<=o;i++)
{
long long x,y,z;
scanf("%lld%lld%lld",&x,&y,&z);
bj(y,x-1,-z);
}
for(long long i=2;i<=n;i++)
{
bj(i,i-1,0);
bj(i-1,i,1);
}
spfa(n,m);
//第二部分
memset(last,0,sizeof(last));
tot=0;
for(long long i=1;i<=e;i++)
{
for(long long p=0;p<=k;p++)
{
bj(p*n+re[i][1],p*n+re[i][2],re[i][3]);
bj(p*n+re[i][2],p*n+re[i][1],re[i][3]);
}
}
for(long long i=1;i<=n;i++)
for(long long j=1;j<=n;j++)
{
for(long long p=1;p<=n;p++)
if(i!=j && j!=p && i!=p && dis[p]-dis[p-1]==0 && dis[p]<=m)
{
if(f[i][p]+f[p][j]<f[i][j])
f[i][j]=f[i][p]+f[p][j];
} }
for(long long i=1;i<=n;i++)
for(long long j=1;j<=n;j++)
if(i!=j && f[i][j]<=l)
{
for(long long p=0;p<=k-1;p++)
{
bj(p*n+i,(p+1)*n+j,0);
}
}
spfa(1,0);
ans=maxlongint;
for(long long i=0;i<=k;i++)
ans=min(dis[i*n+n],ans);
printf("%lld\n",ans);
}

【NOIP2013模拟】DY引擎的更多相关文章

  1. 【NOIP2013模拟】终极武器(经典分析+二分区间)

    No.2. [NOIP2013模拟]终极武器 题意: 给定你一些区间,然后让你找出\(1\sim 9\)中的等价类数字. 也就是说在任何一个区间里的任何一个数,把其中后\(k\)位中的某一位换成等价类 ...

  2. JZOJ 3493. 【NOIP2013模拟联考13】三角形

    3493. [NOIP2013模拟联考13]三角形(triangle) (File IO): input:triangle.in output:triangle.out Time Limits: 10 ...

  3. JZOJ 3487. 【NOIP2013模拟联考11】剑与魔法(dragons)

    3487. [NOIP2013模拟联考11]剑与魔法(dragons) (Standard IO) Time Limits: 1000 ms  Memory Limits: 131072 KB  De ...

  4. JZOJ 3470. 【NOIP2013模拟联考8】最短路(path)

    470. [NOIP2013模拟联考8]最短路(path) (Standard IO) Time Limits: 1000 ms  Memory Limits: 262144 KB  Detailed ...

  5. JZOJ 3388. 【NOIP2013模拟】绿豆蛙的归宿

    3388. [NOIP2013模拟]绿豆蛙的归宿 (Standard IO) Time Limits: 1000 ms  Memory Limits: 131072 KB  Detailed Limi ...

  6. JZOJ 3463. 【NOIP2013模拟联考5】军训

    3463. [NOIP2013模拟联考5]军训(training) (Standard IO) Time Limits: 2000 ms  Memory Limits: 262144 KB  Deta ...

  7. JZOJ 3462. 【NOIP2013模拟联考5】休息(rest)

    3462. [NOIP2013模拟联考5]休息(rest) (Standard IO) Time Limits: 1000 ms  Memory Limits: 262144 KB  Detailed ...

  8. JZOJ 3461. 【NOIP2013模拟联考5】小麦亩产一千八(kela)

    3461. [NOIP2013模拟联考5]小麦亩产一千八(kela) (Standard IO) Time Limits: 1000 ms  Memory Limits: 262144 KB  Det ...

  9. JZOJ 3509. 【NOIP2013模拟11.5B组】倒霉的小C

    3509. [NOIP2013模拟11.5B组]倒霉的小C(beats) (File IO): input:beats.in output:beats.out Time Limits: 1000 ms ...

随机推荐

  1. springboot 使用外置tomcat启动

    pom.xml  如下 <?xml version="1.0" encoding="UTF-8"?> <project xmlns=" ...

  2. 8 redo log内部结构分析(IMU/非IMU)--update示例

    Oracle内核的进步 ---- 新.老Redo机制对比 体系结构 非IMU下的redo产生过程 --分析redo log(update) SQL> set sqlprompt "_U ...

  3. SPA应用性能优化(懒加载)

    前提: 如今开发方式都是采用前后台分离的方式,前台采用的方式则是单页面应用开发简称SPA,这种开发模式最大的一个特点就是将有所代码打包成了一个文件, 这会导致了一个问题就是如果这个应用过大,打出来的这 ...

  4. 期货、股指期权、ETF期权

    期货与期权: 期权是指一种合约,该合约赋予持有人在某一特定日期或该日之前的任何时间以固定价格购进或售出某种资产的权利. 期货是标准化的合约,赋予参与者在未来的某个时间点以约定好的一个价格去买入或者卖出 ...

  5. linux系统中不小心执行了rm -rf ./* 怎么办?解决:文件系统的备份与恢复

    XFS提供了 xfsdump 和 xfsrestore 工具协助备份XFS文件系统中的数据.xfsdump 按inode顺序备份一个XFS文件系统.centos7选择xfs格式作为默认文件系统,而且不 ...

  6. 消息中间件 JMS入门

    1. JMS入门 1.1消息中间件 什么是消息中间件 消息中间件利用高效可靠的消息传递机制进行平台无关的数据交流,并基于数据通信来进行分布式系统的集成.通过提供消息传递和消息排队模型,它可以在分布式环 ...

  7. 打印页面内容,<input>不好使,用<textarea> 代替

    <textarea class="sld-textarea" onchange="changeTextareaValue(this)">123< ...

  8. BZOJ 4033: [HAOI2015]树上染色题解

    BZOJ 4033: [HAOI2015]树上染色题解(树形dp) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1327400 原题地址: BZOJ 403 ...

  9. echarts markLine 辅助线非直线设置

    效果图: 用例option: option = { title: { text: '未来一周气温变化', subtext: '纯属虚构' }, tooltip: { trigger: 'axis' } ...

  10. python学习五十五天subprocess模块的使用

    我们经常需要通过python去执行一条系统执行命令或者脚本,系统的shell命令独立于你python进程之外的,没执行一条命令,就发起一个新的进程, 三种执行命令的方法 subprocess.run( ...