Spark-PySpark sql各种内置函数
_functions = {
'lit': 'Creates a :class:`Column` of literal value.',
'col': 'Returns a :class:`Column` based on the given column name.'根据给定的列名返回一个:class:`Column`
'column': 'Returns a :class:`Column` based on the given column name.',根据给定的列名返回一个:class:`Column`
'asc': 'Returns a sort expression based on the ascending order of the given column name.',返回基于给定列名的升序的排序表达式
'desc': 'Returns a sort expression based on the descending order of the given column name.',返回基于给定列名的降序的排序表达式
'upper': 'Converts a string expression to upper case.',将字符串表达式转换为大写
'lower': 'Converts a string expression to upper case.',将字符串表达式转换为大写
'sqrt': 'Computes the square root of the specified float value.',计算指定浮点值的平方根
'abs': 'Computes the absolute value.',计算绝对值
'max': 'Aggregate function: returns the maximum value of the expression in a group.',聚合函数:返回组中表达式的最大值
'min': 'Aggregate function: returns the minimum value of the expression in a group.',聚合函数:返回组中表达式的最小值
'count': 'Aggregate function: returns the number of items in a group.',聚合函数:返回组中的项目数
'sum': 'Aggregate function: returns the sum of all values in the expression.',聚合函数:返回表达式中所有值的总和
'avg': 'Aggregate function: returns the average of the values in a group.',聚合函数:返回组中值的平均值
'mean': 'Aggregate function: returns the average of the values in a group.',聚合函数:返回组中值的平均值
'sumDistinct': 'Aggregate function: returns the sum of distinct values in the expression.',聚合函数:返回表达式中不同值的总和
}
_functions_1_4 = {
# unary math functions
'acos': 'Computes the cosine inverse of the given value; the returned angle is in the range' +
'0.0 through pi.',
'asin': 'Computes the sine inverse of the given value; the returned angle is in the range' +
'-pi/2 through pi/2.',
'atan': 'Computes the tangent inverse of the given value.',
'cbrt': 'Computes the cube-root of the given value.',
'ceil': 'Computes the ceiling of the given value.',
'cos': 'Computes the cosine of the given value.',
'cosh': 'Computes the hyperbolic cosine of the given value.',
'exp': 'Computes the exponential of the given value.',
'expm1': 'Computes the exponential of the given value minus one.',
'floor': 'Computes the floor of the given value.',
'log': 'Computes the natural logarithm of the given value.',
'log10': 'Computes the logarithm of the given value in Base 10.',
'log1p': 'Computes the natural logarithm of the given value plus one.',
'rint': 'Returns the double value that is closest in value to the argument and' +
' is equal to a mathematical integer.',
'signum': 'Computes the signum of the given value.',
'sin': 'Computes the sine of the given value.',
'sinh': 'Computes the hyperbolic sine of the given value.',
'tan': 'Computes the tangent of the given value.',
'tanh': 'Computes the hyperbolic tangent of the given value.',
'toDegrees': '.. note:: Deprecated in 2.1, use degrees instead.',
'toRadians': '.. note:: Deprecated in 2.1, use radians instead.',
'bitwiseNOT': 'Computes bitwise not.',
}
_functions_1_6 = {
# unary math functions
'stddev': 'Aggregate function: returns the unbiased sample standard deviation of' +
' the expression in a group.',
'stddev_samp': 'Aggregate function: returns the unbiased sample standard deviation of' +
' the expression in a group.',
'stddev_pop': 'Aggregate function: returns population standard deviation of' +
' the expression in a group.',
'variance': 'Aggregate function: returns the population variance of the values in a group.',
'var_samp': 'Aggregate function: returns the unbiased variance of the values in a group.',
'var_pop': 'Aggregate function: returns the population variance of the values in a group.',
'skewness': 'Aggregate function: returns the skewness of the values in a group.',
'kurtosis': 'Aggregate function: returns the kurtosis of the values in a group.',
'collect_list': 'Aggregate function: returns a list of objects with duplicates.',
'collect_set': 'Aggregate function: returns a set of objects with duplicate elements' +
' eliminated.',
}
_functions_2_1 = {
# unary math functions
'degrees': 'Converts an angle measured in radians to an approximately equivalent angle ' +
'measured in degrees.',
'radians': 'Converts an angle measured in degrees to an approximately equivalent angle ' +
'measured in radians.',
}
_functions_2_2 = {
'to_date': 'Converts a string date into a DateType using the (optionally) specified format.',
'to_timestamp': 'Converts a string timestamp into a timestamp type using the ' +
'(optionally) specified format.',
}
# math functions that take two arguments as input
_binary_mathfunctions = {
'atan2': 'Returns the angle theta from the conversion of rectangular coordinates (x, y) to' +
'polar coordinates (r, theta).',
'hypot': 'Computes ``sqrt(a^2 + b^2)`` without intermediate overflow or underflow.',
'pow': 'Returns the value of the first argument raised to the power of the second argument.',
}
_window_functions = {
'row_number':
"""returns a sequential number starting at 1 within a window partition.""",
'dense_rank':
"""returns the rank of rows within a window partition, without any gaps.
The difference between rank and dense_rank is that dense_rank leaves no gaps in ranking
sequence when there are ties. That is, if you were ranking a competition using dense_rank
and had three people tie for second place, you would say that all three were in second
place and that the next person came in third. Rank would give me sequential numbers, making
the person that came in third place (after the ties) would register as coming in fifth.
This is equivalent to the DENSE_RANK function in SQL.""",
'rank':
"""returns the rank of rows within a window partition.
The difference between rank and dense_rank is that dense_rank leaves no gaps in ranking
sequence when there are ties. That is, if you were ranking a competition using dense_rank
and had three people tie for second place, you would say that all three were in second
place and that the next person came in third. Rank would give me sequential numbers, making
the person that came in third place (after the ties) would register as coming in fifth.
This is equivalent to the RANK function in SQL.""",
'cume_dist':
"""returns the cumulative distribution of values within a window partition,
i.e. the fraction of rows that are below the current row.""",
'percent_rank':
"""returns the relative rank (i.e. percentile) of rows within a window partition.""",
}
Spark-PySpark sql各种内置函数的更多相关文章
- SQL Server 内置函数、临时对象、流程控制
SQL Server 内置函数 日期时间函数 --返回当前系统日期时间 select getdate() as [datetime],sysdatetime() as [datetime2] getd ...
- [SQL]SUTFF内置函数的用法 (删除指定长度的字符并在指定的起始点插入另一组字符)
STUFF 删除指定长度的字符并在指定的起始点插入另一组字符. 语法 STUFF ( character_expression , start , length , character_express ...
- 10、SQL Server 内置函数、临时对象、流程控制
SQL Server 内置函数 日期时间函数 --返回当前系统日期时间 select getdate() as [datetime],sysdatetime() as [datetime2] getd ...
- sql server内置函数
MSDN标准文档:https://msdn.microsoft.com/zh-cn/library/ff848784(v=sql.120).aspx 配置函数 select @@servername ...
- Sql Server内置函数实现MD5加密
实例 MD5加密“123456”: HashBytes('MD5','123456') 结果:0xE10ADC3949BA59ABBE56E057F20F883E (提示:看完最后,结果要进行转换.) ...
- 总结Sql Server内置函数实现MD5加密
--MD5加密 --HashBytes ('加密方式', '待加密的值') --加密方式= MD2 | MD4 | MD5 | SHA | SHA1 --返回值类型:varbinary(maximum ...
- mysql 内置函数和sql server 内置函数的区别
以下函数均没有对参数做说明,使用的使用需要了解其参数内容 数据库 sql server mysql oracle 举例 获得当前系统时间 getdate() now() sysdate 注意不是函数 ...
- SQL Server 内置函数实现MD5加密
一.MD5加密 HASHBYTES ('加密方式', '待加密的值') 加密方式= MD2 | MD4 | MD5 | SHA | SHA1 返回值类型:varbinary(maxim ...
- [SQL]SUTFF内置函数的用法
STUFF 删除指定长度的字符并在指定的起始点插入另一组字符. 语法 STUFF ( character_expression , start , length , character_express ...
随机推荐
- Eratosthenes筛法
复杂度为nlogn. 算法思想为:枚举1~sqrt(n),然后把每一个数的倍数都都打上不是素数的标记. 还要特别注意0,1不是素数,打标记枚举到i*k<=n. 代码如下 #include< ...
- Java Web开发技术教程入门-数据库
补更:阅战阅勇第六天 今天阅读了这本书的第六章-访问数据.首先,这本书讲解的是MySql数据库,它是一个关系型数据库管理系统,是由瑞典MySqlAB公司开发,目前属于Oracle旗下公司.在web应用 ...
- command----常用命令更新ing
common commands 1:split---拆分文件 [root@localhost split]# split -b 1M split.tar.gz split_ #按1M拆分文件 [roo ...
- java中this总结(转载请注明出处)
1:this在构造方法中:this可以进行构造方法中的相互调用,this(参数): 2:this调用方法中,代表调用该方法的对象的地址,例如下面的代码比较 package thisTest; publ ...
- ASP.NET CORE CACHE的使用(含MemoryCache,Redis)
原文:ASP.NET CORE CACHE的使用(含MemoryCache,Redis) 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接 ...
- 常用的TCP/UDP端口
已知的TCP/UDP端口可以在wikipedia上找到: List of TCP and UDP port numbers, 太多了,按组列举了最常用的,如下: FTP:21SSH:22Telnet: ...
- Cesium-entiy闪烁范例
// name:"圆闪烁", function f1() { var x=1; var flog=true; viewer.entities.add({ name:"圆形 ...
- Centos7下安装ZooKeeper
1.下载源码 zookeeper 需要jdk的支持,需要先安装jdk 官网下载地址: http://mirrors.hust.edu.cn/apache/zookeeper/ 选择最新的版本进行下载 ...
- hadoop上hive的安装
1.前言 说明:安装hive前提是要先安装hadoop集群,并且hive只需要再hadoop的namenode节点集群里安装即可(需要再所有namenode上安装),可以不在datanode节点的机器 ...
- Navicat安装、使用教程
下载地址:Navicat的安装包及破解文件 一. Navicat安装 Navicat既可安装在服务器端,也可以安装在客户端.安装在服务器端,导入数据时可使用默认用户,也可以使用远程用户:安装在客户端, ...