https://blog.csdn.net/weixin_41484240/article/details/81204113

https://blog.csdn.net/baidu_38127162/article/details/82380914

https://blog.csdn.net/u013541523/article/details/80828965

MLS(移动最小二乘)的更多相关文章

  1. 从零开始一起学习SLAM | 点云平滑法线估计

    点击公众号"计算机视觉life"关注,置顶星标更快接收消息! 本文编程练习框架及数据获取方法见文末获取方式 菜单栏点击"知识星球"查看「从零开始学习SLAM」一 ...

  2. IRLS(迭代加权最小二乘)

    IRLS用于解决这种目标函数的优化问题(实际上是用2范数来近似替代p范数,特殊的如1范数). 可将其等价变形为加权的线性最小二乘问题: 其中W(t)可看成对角矩阵,每步的w可用下面的序列代替 如果 p ...

  3. 一般多项式曲线的最小二乘回归(Linear Regression)

    对于一般多项式: K为多项式最高项次,a为不确定的常数项,共k+1个; 有离散数据集对应,其方差: β为,方差函数S对β自变量第j个参数的梯度(偏导数): 当以上梯度为零时,S函数值最小,即: 中的每 ...

  4. Stanford大学机器学习公开课(三):局部加权回归、最小二乘的概率解释、逻辑回归、感知器算法

    (一)局部加权回归 通常情况下的线性拟合不能很好地预测所有的值,因为它容易导致欠拟合(under fitting).如下图的左图.而多项式拟合能拟合所有数据,但是在预测新样本的时候又会变得很糟糕,因为 ...

  5. 浅谈压缩感知(三十):压缩感知重构算法之L1最小二乘

    主要内容: l1_ls的算法流程 l1_ls的MATLAB实现 一维信号的实验与结果 前言 前面所介绍的算法都是在匹配追踪算法MP基础上延伸的贪心算法,从本节开始,介绍基于凸优化的压缩感知重构算法. ...

  6. 总体最小二乘(TLS)

    对于见得多了的东西,我往往就习以为常了,慢慢的就默认了它的存在,而不去思考内在的一些道理.总体最小二乘是一种推广最小二乘方法,本文的主要内容参考张贤达的<矩阵分析与应用>. 1. 最小二乘 ...

  7. 线性判别分析(LDA)准则:FIsher准则、感知机准则、最小二乘(最小均方误差)准则

    准则 采用一种分类形式后,就要采用准则来衡量分类的效果,最好的结果一般出现在准则函数的极值点上,因此将分类器的设计问题转化为求准则函数极值问题,即求准则函数的参数,如线性分类器中的权值向量. 分类器设 ...

  8. 最大似然估计(MLE)与最小二乘估计(LSE)的区别

    最大似然估计与最小二乘估计的区别 标签(空格分隔): 概率论与数理统计 最小二乘估计 对于最小二乘估计来说,最合理的参数估计量应该使得模型能最好地拟合样本数据,也就是估计值与观测值之差的平方和最小. ...

  9. 回归——线性回归,Logistic回归,范数,最大似然,梯度,最小二乘……

    写在前面:在本篇博客中,旨在对线性回归从新的角度考虑,然后引入解决线性回归中会用到的最大似然近似(Maximum Likelihood Appropriation-MLA) 求解模型中的参数,以及梯度 ...

随机推荐

  1. 16位masm汇编实现筛法,状压求十万以内素数

    .model small .data table byte 3,12500 dup (0);;0和1不是质数 i word 0 j word 0 .stack 4096 .code main proc ...

  2. Struts2笔记(学struts2只需要这一篇文章)

    1.如何将struts2框架引入到web项目中      1.把struts2相关jar包引入到项目中 2.把struts2的配置文件直接放到src下面,名字要叫做struts.xml.(运行时配置文 ...

  3. Selenium 加载Chrome/Firefox浏览器配置文件

    Selenium启动浏览器时,默认是打开一个新用户,不会加载原有的配置以及插件.但有些时候我们可能需要加载默认配置. 一.Chrome浏览器 1.在Chrome浏览器的地址栏输入:chrome://v ...

  4. 「HAOI 2018」染色

    题目链接 戳我 \(Solution\) 观察题目发现恰好出现了\(s\)次的颜色有\(k\)种,不太好弄. 所以我们设\(a[i]\)表示为恰好出现了\(s\)次的颜色有至少\(i\)种的方案数,然 ...

  5. ajax异步加载查询数据库

    <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/ ...

  6. shell定义

    用户输入的命令并且把它们送到内核.不仅如此,Shell有自己的编程语言用于对命令的编辑,它允许用户编写由shell命令组成的程序. Shell编程语言具有普通编程语言的很多特点 无图形化界面时与lin ...

  7. C++入门经典-例2.12-求逻辑表达式的值

    1:代码如下: // 2.12.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include<iostream> using ...

  8. MQTT协议 Websocket JS客户端

    特别提示:本人博客部分有参考网络其他博客,但均是本人亲手编写过并验证通过.如发现博客有错误,请及时提出以免误导其他人,谢谢!欢迎转载,但记得标明文章出处:http://www.cnblogs.com/ ...

  9. LeetCode 54. 螺旋矩阵(Spiral Matrix) 剑指offer-顺时针打印矩阵

    题目描述 给定一个包含 m x n 个元素的矩阵(m 行, n 列),请按照顺时针螺旋顺序,返回矩阵中的所有元素. 示例 1: 输入: [ [ 1, 2, 3 ], [ 4, 5, 6 ], [ 7, ...

  10. 了解一下urlencode()函数

    urlencode()函数 在PHP官方网站中的解释如下: 编码 URL 字符串——就是对特殊字符进行编码转移(.  _  -  除外): string urlencode ( string $str ...