A 2d grid map of m rows and n columns is initially filled with water. We may perform an addLand operation which turns the water at position (row, col) into a land. Given a list of positions to operate, count the number of islands after each addLand operation. An island is surrounded by water and is formed by connecting adjacent lands horizontally or vertically. You may assume all four edges of the grid are all surrounded by water.

Example:

Given m = 3, n = 3, positions = [[0,0], [0,1], [1,2], [2,1]].
Initially, the 2d grid grid is filled with water. (Assume 0 represents water and 1 represents land). 0 0 0
0 0 0
0 0 0
Operation #1: addLand(0, 0) turns the water at grid[0][0] into a land. 1 0 0
0 0 0 Number of islands = 1
0 0 0
Operation #2: addLand(0, 1) turns the water at grid[0][1] into a land. 1 1 0
0 0 0 Number of islands = 1
0 0 0
Operation #3: addLand(1, 2) turns the water at grid[1][2] into a land. 1 1 0
0 0 1 Number of islands = 2
0 0 0
Operation #4: addLand(2, 1) turns the water at grid[2][1] into a land. 1 1 0
0 0 1 Number of islands = 3
0 1 0
We return the result as an array: [1, 1, 2, 3] Challenge: Can you do it in time complexity O(k log mn), where k is the length of the positions?

Union Find

Princeton's lecture note on Union Find in Algorithms and Data Structures It is a well organized note with clear illustration describing from the naive QuickFind to the one with Weighting and Path compression. With Weighting and Path compression, The algorithm runs in

O((M+N) log* N) where M is the number of operations ( unite and find ), N is the number of objects, log* is iterated logarithm while the naive runs in O(MN).

方法一: Union Find based on Quick Find

我觉得:Union复杂度: O(M*N), where M is the number of calls of Union, and N is the size of id array, in our case N=m*n

Find复杂度: O(1)

实际运行时间199ms

 public class Solution {
public List<Integer> numIslands2(int m, int n, int[][] positions) {
int[][] dirs = new int[][]{{-1,0},{1,0},{0,1},{0,-1}};
unionFind uf = new unionFind(m*n);
List<Integer> res = new ArrayList<Integer>();
for (int[] pos : positions) {
int cur = pos[0]*n + pos[1];
uf.ids[cur] = cur;
uf.count++;
for (int[] dir : dirs) {
int x = dir[0] + pos[0];
int y = dir[1] + pos[1];
int nb = x*n+y;
if (x<0 || x>=m || y<0 || y>=n || uf.ids[nb]==-1) continue;
if (uf.find(nb) != uf.find(cur)) {
uf.union(nb, cur);
}
}
res.add(uf.count);
}
return res;
} public class unionFind {
int[] ids;
int count;
public unionFind(int num) {
this.ids = new int[num];
Arrays.fill(ids, -1);
this.count = 0;
}
public int find(int num) {
return ids[num];
}
public boolean union(int n1, int n2) {
int id1=ids[n1], id2=ids[n2];
if (id1 != id2) {
for (int i=0; i<ids.length; i++) {
if (ids[i] == id2) {
ids[i] = id1;
}
}
count--;
return true;
}
return false;
}
}
}

Faster Union Find方法2:Union Find Based on Quick Union 参考:https://leetcode.com/discuss/69572/easiest-java-solution-with-explanations

Quick Union is Faster than Quick Find

The idea is simple. To represent a list of islands, we use trees. i.e., a list of roots. This helps us find the identifier of an island faster. If roots[c] = p means the parent of node c is p, we can climb up the parent chain to find out the identifier of an island, i.e., which island this point belongs to:

Do root[root[roots[c]]]... until root[c] == c;

To transform the two dimension problem into the classic UF, perform a linear mapping:

int id = n * x + y;

Initially assume every cell are in non-island set {-1}. When point A is added, we create a new root, i.e., a new island. Then, check if any of its 4 neighbors belong to the same island. If not,union the neighbor by setting the root to be the same. Remember to skip non-island cells.

我觉得:Union复杂度: O(M*logN), where M is the number of calls of Union, and N is the size of id array, in our case N=m*n

Find复杂度: O(logN)

实际运行28ms

 public class Solution {
public List<Integer> numIslands2(int m, int n, int[][] positions) {
int[][] dirs = new int[][]{{-1,0},{1,0},{0,1},{0,-1}};
unionFind uf = new unionFind(m*n);
List<Integer> res = new ArrayList<Integer>();
for (int[] pos : positions) {
int cur = pos[0]*n + pos[1];
uf.ids[cur] = cur;
uf.count++;
for (int[] dir : dirs) {
int x = dir[0] + pos[0];
int y = dir[1] + pos[1];
int nb = x*n+y;
if (x<0 || x>=m || y<0 || y>=n || uf.ids[nb]==-1) continue;
int rootNb = uf.root(nb);
int rootCur = uf.root(cur);
if (rootCur != rootNb) { //not connect
uf.union(rootCur, rootNb);
uf.count--;
}
}
res.add(uf.count);
}
return res;
} public class unionFind { //ids[]记录上一跳pos,root记录最上面的pos,union(i, j)修改i的root的上一跳为j的root
int[] ids;
int count;
public unionFind(int num) {
this.ids = new int[num];
Arrays.fill(ids, -1);
this.count = 0;
} public int root(int i) { //FIND operation is proportional to the depth of the tree.the average running time is O(logN)
while (ids[i] != i) i = ids[i];
return i;
} public boolean isConnected(int i, int j) {
return root(i) == root(j);
} public void union(int i, int j) {
int iRoot = root(i);
int jRoot = root(j);
ids[iRoot] = jRoot;
}
}
}

Summary of Union Find:

Princeton's lecture note on Union Find

Quick Find

Quick Union

Here is a very easy understanding video by Stanford(看3:00开始的例子,非常简单, 一看就懂)

Compare of Fast Find & Fast Union, though worst case time complexity is almost the same, fast union is faster than fast find

Leetcode: Number of Islands II && Summary of Union Find的更多相关文章

  1. [LeetCode] Number of Islands II 岛屿的数量之二

    A 2d grid map of m rows and n columns is initially filled with water. We may perform an addLand oper ...

  2. LeetCode – Number of Islands II

    A 2d grid map of m rows and n columns is initially filled with water. We may perform an addLand oper ...

  3. [LeetCode] Number of Islands II

    Problem Description: A 2d grid map of m rows and n columns is initially filled with water. We may pe ...

  4. [LeetCode] Number of Islands 岛屿的数量

    Given a 2d grid map of '1's (land) and '0's (water), count the number of islands. An island is surro ...

  5. [LeetCode] 305. Number of Islands II 岛屿的数量之二

    A 2d grid map of m rows and n columns is initially filled with water. We may perform an addLand oper ...

  6. LeetCode 305. Number of Islands II

    原题链接在这里:https://leetcode.com/problems/number-of-islands-ii/ 题目: A 2d grid map of m rows and n column ...

  7. [LeetCode] 305. Number of Islands II 岛屿的数量 II

    A 2d grid map of m rows and n columns is initially filled with water. We may perform an addLand oper ...

  8. 305. Number of Islands II

    题目: A 2d grid map of m rows and n columns is initially filled with water. We may perform an addLand  ...

  9. [Swift]LeetCode305. 岛屿的个数 II $ Number of Islands II

    A 2d grid map of m rows and n columns is initially filled with water. We may perform an addLand oper ...

随机推荐

  1. enhance convenience rather than contribute to the fundamental power of the language

    Computer Science An Overview _J. Glenn Brookshear _11th Edition Universal Programming Languages In  ...

  2. C++ builder的文件操作

    在编程的过程中,文件的操作是一个经常用到的问题,在C++Builder中,可以使用多种方法对文件操作,下面我就按以下几个部分对此作详细介绍,就是:1.基于C的文件操作:2.基于C++的文件操作:3.基 ...

  3. Linux的权限说明

    Linux的权限不是很细致,只有RWX三种r(Read,读取):对文件而言,具有读取文件内容的权限:对目录来说,具有浏览目录的权限.w(Write,写入):对文件而言,具有新增,修改,删除文件内容的权 ...

  4. SQLServer2008:助您轻松编写T-SQL存储过程(原创)【转】

      本文主要介绍 SQLServerExpress2008不用第三方工具调试T-SQL语句,经过本文的介绍,用SQLSERVER2008 Manage studio 编写.调试T-SQL存储过程都将是 ...

  5. String.format(转)

    转自:http://blog.csdn.net/lonely_fireworks/article/details/7962171 方便自己查阅. 常规类型的格式化 String类的format()方法 ...

  6. javascript正则表达式(一)

    元字符 ( [ { \ ^ $ | ) ? * + . 预定义的特殊字符 字符 正则 描述 \t /\t/ 制表符 \n /\n/ 制表符 \r /\r/ 回车符 \f /\f/ 换页符 \a /\a ...

  7. H264关于RTP协议的实现

    完整的C/S架构的基于RTP/RTCP的H.264视频传输方案.此方案中,在服务器端和客户端分别进行了功能模块设计. 服务器端:RTP封装模块主要是对H.264码流进行打包封装:RTCP分析模块负责产 ...

  8. c#中的linq二

    c#中的linq二   using System; using System.Collections.Generic; using System.Linq; using System.Text; us ...

  9. PHP的日期和时间

    <?php //2.获取日期和时间 //时间是一维的,所以任何一个时间的时间戳都是不一样的 //array getdate([int timestamp]); //string date(str ...

  10. 判断远程图片是否存在【适用于windows服务器】

    <?php function file_exists2($url) { if(@file_get_contents($url,0,null,0,1)) return 1; else return ...