题目链接:http://poj.org/problem?id=2488

A Knight's Journey
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 36695   Accepted: 12462

Description

Background 
The knight is getting bored of seeing the same black and white squares again and again and has decided to make a journey 
around the world. Whenever a knight moves, it is two squares in one direction and one square perpendicular to this. The world of a knight is the chessboard he is living on. Our knight lives on a chessboard that has a smaller area than a regular 8 * 8 board, but it is still rectangular. Can you help this adventurous knight to make travel plans?

Problem 
Find a path such that the knight visits every square once. The knight can start and end on any square of the board.

Input

The input begins with a positive integer n in the first line. The following lines contain n test cases. Each test case consists of a single line with two positive integers p and q, such that 1 <= p * q <= 26. This represents a p * q chessboard, where p describes how many different square numbers 1, . . . , p exist, q describes how many different square letters exist. These are the first q letters of the Latin alphabet: A, . . .

Output

The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Then print a single line containing the lexicographically first path that visits all squares of the chessboard with knight moves followed by an empty line. The path should be given on a single line by concatenating the names of the visited squares. Each square name consists of a capital letter followed by a number. 
If no such path exist, you should output impossible on a single line.

Sample Input

3
1 1
2 3
4 3

Sample Output

Scenario #1:
A1 Scenario #2:
impossible Scenario #3:
A1B3C1A2B4C2A3B1C3A4B2C4

题目大意: 任选一个起点,按照国际象棋马的跳法,不重复的跳完整个棋盘,如果有多种路线则选择字典序最小的路线(路线是点的横纵坐标的集合,注意棋盘的横坐标的用大写字母,纵坐标是数字)

题目分析: 

1. 应该看到这个题就可以想到用DFS,当首先要明白这个题的意思是能否只走一遍(不回头不重复)将整个地图走完,而普通的深度优先搜索是一直走,走不通之后沿路返回到某处继续深搜。所以这个题要用到的回溯思想,如果不重复走一遍就走完了,做一个标记,算法停止;否则在某种DFS下走到某一步时按马跳的规则无路可走而棋盘还有为走到的点,这样我们就需要撤消这一步,进而尝试其他的路线(当然其他的路线也可能导致撤销),而所谓撤销这一步就是在递归深搜返回时重置该点,以便在当前路线走一遍行不通换另一种路线时,该点的状态是未访问过的,而不是像普通的DFS当作已经访问了。

2. 如果有多种方式可以不重复走一遍的走完,需要输出按字典序最小的路径,而注意到国际象棋的棋盘是列为字母,行为数字,如果能够不回头走一遍的走完,一定会经过A1点,所以我们应该从A1开始搜索,以确保之后得到的路径字典序是最小的(也就是说如果路径不以A1开始,该路径一定不是字典序最小路径),而且我们应该确保优先选择的方向是字典序最小的方向,这样我们最先得到的路径就是字典序最小的。

参考代码:

#include <cstdio>
#include <cstring> using namespace std; const int MAX_N = ;
//字典序最小的行走方向
const int dx[] = {-, , -, , -, , -, };
const int dy[] = {-, -, -, -, , , , };
bool visited[MAX_N][MAX_N];
struct Step{
char x, y;
} path[MAX_N];
bool success; //是否成功遍历的标记
int cases, p, q; void DFS(int x, int y, int num); int main()
{
scanf("%d", &cases);
for (int c = ; c <= cases; c++)
{
success = false;
scanf("%d%d", &p, &q);
memset(visited, false, sizeof(visited));
visited[][] = true; //起点
DFS(, , );
printf("Scenario #%d:\n", c);
if (success)
{
for (int i = ; i <= p * q; i++)
printf("%c%c", path[i].y, path[i].x);
printf("\n");
}
else
printf("impossible\n");
if (c != cases)
printf("\n"); //注意该题的换行
}
return ;
} void DFS(int x, int y, int num)
{
path[num].y = y + 'A' - ; //int 转为 char
path[num].x = x + '';
if (num == p * q)
{
success = true;
return;
}
for (int i = ; i < ; i++)
{
int nx = x + dx[i];
int ny = y + dy[i];
if ( < nx && nx <= p && < ny && ny <= q
&& !visited[nx][ny] && !success)
{
visited[nx][ny] = true;
DFS(nx, ny, num+);
visited[nx][ny] = false; //撤销该步
}
}
}

 

POJ2488-A Knight's Journey(DFS+回溯)的更多相关文章

  1. POJ2488:A Knight's Journey(dfs)

    http://poj.org/problem?id=2488 Description Background The knight is getting bored of seeing the same ...

  2. poj2488 A Knight's Journey裸dfs

    A Knight's Journey Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 35868   Accepted: 12 ...

  3. POJ2488A Knight's Journey[DFS]

    A Knight's Journey Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 41936   Accepted: 14 ...

  4. 迷宫问题bfs, A Knight's Journey(dfs)

    迷宫问题(bfs) POJ - 3984   #include <iostream> #include <queue> #include <stack> #incl ...

  5. 快速切题 poj2488 A Knight's Journey

    A Knight's Journey Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 31195   Accepted: 10 ...

  6. POJ2488 A Knight's Journey

    题目:http://poj.org/problem?id=2488 题目大意:可以从任意点开始,只要能走完棋盘所有点,并要求字典序最小,不可能的话就impossible: 思路:dfs+回溯,因为字典 ...

  7. A Knight's Journey(dfs)

    Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 25950   Accepted: 8853 Description Back ...

  8. [poj]2488 A Knight's Journey dfs+路径打印

    Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 45941   Accepted: 15637 Description Bac ...

  9. poj-2488 a knight's journey(搜索题)

    Time limit1000 ms Memory limit65536 kB Background The knight is getting bored of seeing the same bla ...

  10. POJ2248 A Knight's Journey(DFS)

    题目链接. 题目大意: 给定一个矩阵,马的初始位置在(0,0),要求给出一个方案,使马走遍所有的点. 列为数字,行为字母,搜索按字典序. 分析: 用 vis[x][y] 标记是否已经访问.因为要搜索所 ...

随机推荐

  1. [PHP] 实现路由映射到指定控制器

    自定义路由的功能,指定到pathinfo的url上,再次升级之前的脚本 SimpleLoader.php <?php class SimpleLoader{ public static func ...

  2. php生成静态文件

    1,通用生成方法 //获取文件内容 $content=file_get_contents("http://www.google.com/" ); $id=110; $filenam ...

  3. Metronic 使用到的开源插件汇总

    Metronic 是一套完整的 UI 模板,但不仅仅是模板,更应该说是一个 UI 框架.它除了提供了大量网页模板,也提供了非常多的 UI 组件,并且应用了众多 jQuery 插件.通过这些资源的整合, ...

  4. [ERROR] Plugin 'InnoDB' init function returned error

    今天一大早到公司,计划把开发环境的mysql升级到5.7.15,干净关闭系统后,把目录从5.6指向到5.7,一切正常,重新指向5.6启动时,报下列错误: 2016-10-31 08:13:14 869 ...

  5. spring扫描classpath下特定package,并加载具有特定注解的接口

    spring扫描classpath下特定package,并加载具有特定注解的接口. 在框架平台的开发中,通常有很多的情况通过spring配置方式来实现某些功能会使得框架平台难以使用和扩展,我们通常的做 ...

  6. js事件绑定

    事件绑定,常见的是odiv.onclick=function(){..........};  这种方式绑定事件太单一,如果绑定多个,那么最后一个事件会覆盖掉之前的,也就是说只执行最后一次绑定的事件,这 ...

  7. AloneJs.confirmbox() —— 确认框

    一.引用 <link href="https://cdn.suziyun.com/alonejs.min.css" rel="stylesheet" /& ...

  8. angular 指令——时钟范例

    <html> <head> <meta charset='utf-8'> <title>模块化</title> <script typ ...

  9. CSS中的三种基本的定位机制

    CSS 定位机制 CSS 有三种基本的定位机制:普通流.浮动和绝对定位. 一.普通流 除非专门指定,否则所有框都在普通流中定位.普通流中元素框的位置由元素在(X)HTML中的位置决定.块级元素从上到下 ...

  10. SAP_Web_Service开发配置

    第一章    SAP创建WS 1.1       概要技术说明 1.2       创建RFC函数 1.3       创建WS 1.4       外部系统访问配置 第二章    SAP调用WS 2 ...