https://ci.apache.org/projects/flink/flink-docs-release-1.0/apis/streaming/event_timestamps_watermarks.html

 

To work with Event Time, streaming programs need to set the time characteristic accordingly.

首先配置成,Event Time

final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);

 

Assigning Timestamps

In order to work with Event Time, Flink needs to know the events’ timestamps, meaning each element in the stream needs to get its event timestamp assigned. That happens usually by accessing/extracting the timestamp from some field in the element.

Timestamp assignment goes hand-in-hand with generating watermarks, which tell the system about the progress in event time.

There are two ways to assign timestamps and generate Watermarks:

  1. Directly in the data stream source
  2. Via a TimestampAssigner / WatermarkGenerator

接着,我们需要定义如何去获取event time和如何产生Watermark?

一种方式,在source中写死,

@Override
public void run(SourceContext<MyType> ctx) throws Exception {
while (/* condition */) {
MyType next = getNext();
ctx.collectWithTimestamp(next, next.getEventTimestamp()); if (next.hasWatermarkTime()) {
ctx.emitWatermark(new Watermark(next.getWatermarkTime()));
}
}
}

这种方式明显比较low,不太方便,并且这种方式是会被TimestampAssigner 覆盖掉的,

所以看看第二种方式,

Timestamp Assigners / Watermark Generators

Timestamp Assigners take a stream and produce a new stream with timestamped elements and watermarks. If the original stream had timestamps or watermarks already, the timestamp assigner overwrites those.

The timestamp assigners occur usually direct after the data source, but it is not strictly required to. A common pattern is for example to parse (MapFunction) and filter (FilterFunction) before the timestamp assigner. In any case, the timestamp assigner needs to occur before the first operation on event time (such as the first window operation).

一般在会在source后加些map,filter做些初始化或格式化

然后,在任意需要用到event time的操作之前,比如window,进行设置

给个例子,

final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime); DataStream<MyEvent> stream = env.addSource(new FlinkKafkaConsumer09<MyEvent>(topic, schema, props)); DataStream<MyEvent> withTimestampsAndWatermarks = stream
.filter( event -> event.severity() == WARNING )
.assignTimestampsAndWatermarks(new MyTimestampsAndWatermarks()); withTimestampsAndWatermarks
.keyBy( (event) -> event.getGroup() )
.timeWindow(Time.seconds(10))
.reduce( (a, b) -> a.add(b) )
.addSink(...);

 

那么Timestamp Assigners如何实现,比如例子中给出的MyTimestampsAndWatermarks

有3种,

With Ascending timestamps

The simplest case for generating watermarks is the case where timestamps within one source occur in ascending order. In that case, the current timestamp can always act as a watermark, because no lower timestamps will occur any more.

DataStream<MyEvent> stream = ...

DataStream<MyEvent> withTimestampsAndWatermarks =
stream.assignTimestampsAndWatermarks(new AscendingTimestampExtractor<MyEvent>() { @Override
public long extractAscendingTimestamp(MyEvent element) {
return element.getCreationTime();
}
});

这种没人用吧,不如直接用processing time了

 

With Periodic Watermarks

The AssignerWithPeriodicWatermarks assigns timestamps and generate watermarks periodically (possibly depending the stream elements, or purely based on processing time).

The interval (every n milliseconds) in which the watermark will be generated is defined via ExecutionConfig.setAutoWatermarkInterval(...). Each time, the assigner’s getCurrentWatermark() method will be called, and a new Watermark will be emitted, if the returned Watermark is non-null and larger than the previous Watermark.

定期的发送,你可以通过ExecutionConfig.setAutoWatermarkInterval(...),来设置这个频率

/**
* This generator generates watermarks assuming that elements come out of order to a certain degree only.
* The latest elements for a certain timestamp t will arrive at most n milliseconds after the earliest
* elements for timestamp t.
*/
public class BoundedOutOfOrdernessGenerator extends AssignerWithPeriodicWatermarks<MyEvent> { private final long maxOutOfOrderness = 3500; // 3.5 seconds private long currentMaxTimestamp; @Override
public long extractTimestamp(MyEvent element, long previousElementTimestamp) {
long timestamp = element.getCreationTime();
currentMaxTimestamp = Math.max(timestamp, currentMaxTimestamp);
return timestamp;
} @Override
public Watermark getCurrentWatermark() {
// return the watermark as current highest timestamp minus the out-of-orderness bound
return new Watermark(currentMaxTimestamp - maxOutOfOrderness);
}
} /**
* This generator generates watermarks that are lagging behind processing time by a certain amount.
* It assumes that elements arrive in Flink after at most a certain time.
*/
public class TimeLagWatermarkGenerator extends AssignerWithPeriodicWatermarks<MyEvent> { private final long maxTimeLag = 5000; // 5 seconds @Override
public long extractTimestamp(MyEvent element, long previousElementTimestamp) {
return element.getCreationTime();
} @Override
public Watermark getCurrentWatermark() {
// return the watermark as current time minus the maximum time lag
return new Watermark(System.currentTimeMillis() - maxTimeLag);
}
}

 

上面给出两个case,区别是第一种,会以event time的Max,来设置watermark

第二种,是以当前的processing time来设置watermark

 

With Punctuated Watermarks

To generate Watermarks whenever a certain event indicates that a new watermark can be generated, use theAssignerWithPunctuatedWatermarks. For this class, Flink will first call the extractTimestamp(...) method to assign the element a timestamp, and then immediately call for that element the checkAndGetNextWatermark(...) method.

The checkAndGetNextWatermark(...) method gets the timestamp that was assigned in the extractTimestamp(...) method, and can decide whether it wants to generate a Watermark. Whenever the checkAndGetNextWatermark(...) method returns a non-null Watermark, and that Watermark is larger than the latest previous Watermark, that new Watermark will be emitted.

这种即,watermark不是由时间来触发的,而是以特定的event触发的,即本到某些特殊的event或message,才触发watermark

所以它的接口叫,checkAndGetNextWatermark

需要先check

public class PunctuatedAssigner extends AssignerWithPunctuatedWatermarks<MyEvent> {

    @Override
public long extractTimestamp(MyEvent element, long previousElementTimestamp) {
return element.getCreationTime();
} @Override
public Watermark checkAndGetNextWatermark(MyEvent lastElement, long extractedTimestamp) {
return element.hasWatermarkMarker() ? new Watermark(extractedTimestamp) : null;
}
}

Flink - Generating Timestamps / Watermarks的更多相关文章

  1. flink Window的Timestamps/Watermarks和allowedLateness的区别

    Watermartks是通过additional的时间戳来控制窗口激活的时间,allowedLateness来控制窗口的销毁时间.   注: 因为此特性包括官方文档在1.3-1.5版本均未做改变,所以 ...

  2. 【翻译】生成 Timestamps / Watermarks

    本文翻译自flink官网:https://ci.apache.org/projects/flink/flink-docs-release-1.7/dev/event_timestamps_waterm ...

  3. Flink - watermark生成

    参考,Flink - Generating Timestamps / Watermarks watermark,只有在有window的情况下才用到,所以在window operator前加上assig ...

  4. Flink Program Guide (3) -- Event Time (DataStream API编程指导 -- For Java)

    Event Time 本文翻译自DataStream API Docs v1.2的Event Time ------------------------------------------------ ...

  5. flink学习之十一-window&EventTime实例

    上面试了Processing Time,在这里准备看下Event Time,以及必须需要关注的,在ET场景下的Watermarks. EventTime & Watermark Event t ...

  6. Flink Program Guide (4) -- 时间戳和Watermark生成(DataStream API编程指导 -- For Java)

    时间戳和Watermark生成 本文翻译自Generating Timestamp / Watermarks --------------------------------------------- ...

  7. Flink学习(二)Flink中的时间

    摘自Apache Flink官网 最早的streaming 架构是storm的lambda架构 分为三个layer batch layer serving layer speed layer 一.在s ...

  8. Flink中的多source+event watermark测试

    这次需要做一个监控项目,全网日志的指标计算,上线的话,计算量应该是百亿/天 单个source对应的sql如下 最原始的sql select pro,throwable,level,ip,`count` ...

  9. [白话解析] Flink的Watermark机制

    [白话解析] Flink的Watermark机制 0x00 摘要 对于Flink来说,Watermark是个很难绕过去的概念.本文将从整体的思路上来说,运用感性直觉的思考来帮大家梳理Watermark ...

随机推荐

  1. 在php4下可用,简单的php数组转成json格式,

    function array_to_json( $array ){     if( !is_array( $array ) ){         return false;     }       $ ...

  2. 从维度理解dp问题

    对于dp,我目前的理解就是,干成题目中的那件事需要作出若干次决策,然后你要取其中最优的结果,我们可以用深搜来递归地找最优解,然后我们来观察一下这个递归树的形状,如果它能从底往上直接递推的话,就不用递归 ...

  3. SU suplane命令学习

    各位博友,不足之处,批评指正! 用其他软件打开看看, 注意:下图中应该是倾角,dip=Δt/Δx,单位为ms/traces,

  4. POJ3687 Labeling Balls(拓扑排序\贪心+Floyd)

    题目是要给n个重量1到n的球编号,有一些约束条件:编号A的球重量要小于编号B的重量,最后就是要输出字典序最小的从1到n各个编号的球的重量. 正向拓扑排序,取最小编号给最小编号是不行的,不举出个例子真的 ...

  5. python 代码片段15

    #coding=utf-8 ''' 如果运行时发生异常的话,解释器会查找相应的处理函数.要是在当前函数里没有 找到的话,它会将异常传递给上层的调用函数,看看那里能不能处理.如果在在最 外层还没有找到的 ...

  6. HDU 3065 (AC自动机模板题)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3065 题目大意:多个模式串,范围是大写字母.匹配串的字符范围是(0~127).问匹配串中含有哪几种模 ...

  7. HDU 4856 (状态压缩DP+TSP)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4856 题目大意:有一个迷宫.迷宫里有些隧道,每个隧道有起点和终点,在隧道里不耗时.出隧道就耗时,你的 ...

  8. 在线代码格式化,在线JSON校验格式化

    在线代码格式化 http://tool.oschina.net/codeformat/json 在线JSON校验格式化 http://www.kjson.com/ 两个好用工具

  9. fork和execve

    fork函数在新的子进程中运行相同的程序,新的子进程是父进程的一个复制品. execve函数在当前进程的上下文中加载并运行一个新的程序.它会覆盖当前进程的地址空间,但并没有创建一个新的进程.新的程序仍 ...

  10. 【BZOJ】1103: [POI2007]大都市meg

    http://www.lydsy.com/JudgeOnline/problem.php?id=1103 题意:一棵n节点的树(1<=n<=250000),m条边(1<=m<= ...