Combination Sum

Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.

The same repeated number may be chosen from C unlimited number of times.

Note:

  • All numbers (including target) will be positive integers.
  • Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1a2 ≤ … ≤ ak).
  • The solution set must not contain duplicate combinations.

For example, given candidate set 2,3,6,7 and target 7,
A solution set is:
[7]
[2, 2, 3]

 

简单的回溯法(递归实现).

比如对于数组3,2,6,7,target = 7,对数组排序得到[2,3,6,7]

1、第1个数字选取2, 那么接下来就是解决从数组[2,3,6,7]选择数字且target = 7-2 = 5

2、第2个数字选择2,那么接下来就是解决从数组[2,3,6,7]选择数字且target = 5-2 = 3

3、第3个数字选择2,那么接下来就是解决从数组[2,3,6,7]选择数字且target = 3-2 = 1

4、此时target = 1小于数组中的所有数字,失败,回溯,重新选择第3个数字

5、第3个数字选择3,那么接下来就是解决从数组[2,3,6,7]选择数字且target = 3-3 = 0

6、target = 0,找到了一组解,继续回溯寻找其他解

 

需要注意的是:如果数组中包含重复元素,我们要忽略(因为每个数字可以选择多次,如果不忽略的话,就会产生重复的结果)。貌似oj的测试集数组中都不包含重复的数字

 

class Solution {
private:
vector<vector<int> > res;
public:
vector<vector<int> > combinationSum(vector<int> &candidates, int target) {
sort(candidates.begin(), candidates.end());//为了输出结果递增,因此先对数组排序
vector<int> tmpres;
helper(candidates, 0, target, tmpres);
return res;
} //从数组candidates[index,...]寻找和为target的组合
void helper(vector<int> &candidates, const int index, const int target, vector<int>&tmpres)
{
if(target == 0)
{
res.push_back(tmpres);
return;
}
for(int i = index; i < candidates.size() && target >= candidates[i]; i++)
if(i == 0 || candidates[i] != candidates[i-1])//由于每个数可以选取多次,因此数组中重复的数就不用考虑
{
tmpres.push_back(candidates[i]);
helper(candidates, i, target - candidates[i], tmpres);
tmpres.pop_back();
}
}
};

 


Combination Sum II

Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.

Each number in C may only be used once in the combination.

Note:

  • All numbers (including target) will be positive integers.
  • Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1a2 ≤ … ≤ ak).
  • The solution set must not contain duplicate combinations.

For example, given candidate set 10,1,2,7,6,1,5 and target 8,

A solution set is:

[1, 7]

[1, 2, 5]

[2, 6]

[1, 1, 6]

 

和上一题差不多,只是每个元素只能选一次。

由于有重复元素的存在,比如数组为[1(1),1(2),2,3],target = 6. 可能出现重复结果1(1),2,3 和 1(2),2,3                          本文地址

我们可以如下处理:如果数组中当前的数字出现重复,在前面重复了k次,且临时结果数组中也包含了k个当前数字,那么当前的数字可以选择;否则就不选择当前数字

class Solution {
private:
vector<vector<int> >res;
public:
vector<vector<int> > combinationSum2(vector<int> &candidates, int target) {
sort(candidates.begin(), candidates.end());
vector<int> tmpres;
helper(candidates, 0, target, tmpres, 0);
return res;
} //从数组candidates[index,...]寻找和为target的组合,times为前一个数字candidates[index-1]重复出现的次数
void helper(vector<int> &candidates, const int index, const int target, vector<int>&tmpres, int times)
{
if(target == 0)
{
res.push_back(tmpres);
return;
}
for(int i = index; i < candidates.size() && target >= candidates[i]; i++)
{
if(i > 0 && candidates[i] == candidates[i-1])times++;
else times = 1;
if(times == 1 || (tmpres.size() >= times-1 && tmpres[tmpres.size()-times+1] == candidates[i]))
{
tmpres.push_back(candidates[i]);
helper(candidates, i+1, target - candidates[i], tmpres, times);
tmpres.pop_back();
}
}
}
};

 

还有一种方法是,在每个子问题的数组中,重复的数字都不选择,这种更简洁

class Solution {
private:
vector<vector<int> >res;
public:
vector<vector<int> > combinationSum2(vector<int> &candidates, int target) {
sort(candidates.begin(), candidates.end());
vector<int> tmpres;
helper(candidates, 0, target, tmpres);
return res;
} //从数组candidates[index,...]寻找和为target的组合
void helper(vector<int> &candidates, const int index, const int target, vector<int>&tmpres)
{
if(target == 0)
{
res.push_back(tmpres);
return;
}
for(int i = index; i < candidates.size() && target >= candidates[i]; i++)
{
if(i > index && candidates[i] == candidates[i-1])continue;//当前子问题中,重复数字都不选择
tmpres.push_back(candidates[i]);
helper(candidates, i+1, target - candidates[i], tmpres);
tmpres.pop_back();
}
}
};

 

【版权声明】转载请注明出处:http://www.cnblogs.com/TenosDoIt/p/3802647.html

LeetCode:Combination Sum I II的更多相关文章

  1. LeetCode: Combination Sum I && II && III

    Title: https://leetcode.com/problems/combination-sum/ Given a set of candidate numbers (C) and a tar ...

  2. [LeetCode] Combination Sum II 组合之和之二

    Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in ...

  3. Leetcode 39 40 216 Combination Sum I II III

    Combination Sum Given a set of candidate numbers (C) and a target number (T), find all unique combin ...

  4. LeetCode: Combination Sum II 解题报告

    Combination Sum II Given a collection of candidate numbers (C) and a target number (T), find all uni ...

  5. 子集系列(二) 满足特定要求的子集,例 [LeetCode] Combination, Combination Sum I, II

    引言 既上一篇 子集系列(一) 后,这里我们接着讨论带有附加条件的子集求解方法. 这类题目也是求子集,只不过不是返回所有的自己,而往往是要求返回满足一定要求的子集. 解这种类型的题目,其思路可以在上一 ...

  6. [LeetCode] Combination Sum IV 组合之和之四

    Given an integer array with all positive numbers and no duplicates, find the number of possible comb ...

  7. [LeetCode] Combination Sum III 组合之和之三

    Find all possible combinations of k numbers that add up to a number n, given that only numbers from ...

  8. [LeetCode] Combination Sum 组合之和

    Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C wher ...

  9. LeetCode Combination Sum III

    原题链接在这里:https://leetcode.com/problems/combination-sum-iii/ 题目: Find all possible combinations of k n ...

随机推荐

  1. Xcode安装的推送证书所在目录

    /Users/用户名/资源库/MobileDevice/Provisioning Profiles

  2. Response、Request、QueryString,repeater添加,修改,删除数据

    内置对象: Response对象:响应请求,Response对象用于动态响应客户端请示,控制发送给用户的信息,并将动态生成响应.Response.Write("<script>a ...

  3. 有关eclipse连接SQL Server 2008的问题

    1.首先,提供一个链接http://blog.163.com/jackie_howe/blog/static/19949134720122261121214/ 这个链接有详细更改SQL Server ...

  4. 让linux中的程序崩溃时生成core文件

    当我们的linux程序崩溃的时候,常常会有这样的提示:    Segmentation fault (core dumped)    段错误 (核心已转储)    提示说生成了core文件,但是此功能 ...

  5. SkipList算法实现

    SkipList是一种快速查找链表,链表元素的是有序的.由W.Pugh发明于1989年.其算法复杂度如下: Average Worst caseSpace O(n) O(n log n)Search ...

  6. delphi 获取两个颜色差值

    前面说了已经获取到颜色值了,现在需要比较两个颜色的差值. 两个颜色的根据RGB的差来取,有两种情况: 1.(R的平方+G的平方+B的平方)开根号,再两个颜色值相减获取差值. 2.(((R1-R2)的平 ...

  7. 第八天:JS内置对象-Date日期对象

    1.Data对象 日期对象用于处理日期和时间 2.获取当日日期    代码如下: <!DOCTYPE html> <html lang="en"><h ...

  8. oracle 查看运行中sql

    sys用户登录 SELECT b.sid oracleID, b.username 登录Oracle用户名, b.serial#, spid 操作系统ID, paddr, sql_text 正在执行的 ...

  9. Dynamic CRM 2013学习笔记(三十八)流程1 - 操作(action)开发与配置详解

    CRM 2013 里流程有4个类别:操作(action).业务流程(business process flow).对话(dialog)和工作流(workflow).它们都是从 setting –> ...

  10. 第十五章:Android 调用WebService(.net平台)

    什么是webservice? Web service是一个平台独立的,低耦合的,自包含的.基于可编程的web的应用程序,可使用开放的XML(标准通用标记语言下的一个子集)标准来描述.发布.发现.协调和 ...