POJ 2464 Brownie Points II --树状数组
题意: 有点迷。有一些点,Stan先选择某个点,经过这个点画一条竖线,Ollie选择一个经过这条直接的点画一条横线。Stan选这两条直线分成的左下和右上部分的点,Ollie选左上和右下部分的点。Stan画一条竖线之后,Ollie有很多种选择,在所有选择中,Stan能获得 “分数最小值的最大值” ,而Ollie的选择便是让自己越多越好。问最后Stan最多能得到的分数是多少,以及在这种情况下Ollie能得到的分数有多少种可能。
解法: 因为Stan先选,然后主动权在Ollie手中,Ollie会优先让自己得到更多的分数,然后再考虑让Stan得到的分数最小。然后才能求得Stan得到的“分数最小值的最大值”。
既然是Stan先选,那么我们最好按x从小到大排序,y坐标离散,依次处理,又因为在同一条竖线可能有很多店,所以直到坐标变化时才来同一处理那些横坐标相同的点,Ollie在这些点对应的纵坐标中做选择,使达到上述说的效果。
由于竖线往右移,那么维护两个树状数组,一个是当前竖线右边的点的情况,一个是左边的。然后扫过去,遇到p[i].x!=p[i-1].x时,就可以处理前面的一个或多个横坐标相同的点了,然后按上述说的做就行了。
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <set>
using namespace std;
#define N 200007 struct node{
int x,y;
}p[N];
int n,maxi;
int L[N],R[N],a[N],b[N];
int lowbit(int x) { return x&-x; }
int cmp1(node ka,node kb) { return ka.x < kb.x; }
int cmp2(node ka,node kb) { return ka.y < kb.y; } void modify(int *c,int x,int val)
{
while(x <= maxi)
c[x] += val, x += lowbit(x);
} int getsum(int *c,int x)
{
int res = ;
while(x > ) { res += c[x]; x -= lowbit(x); }
return res;
} int main()
{
int i,j;
while(scanf("%d",&n)!=EOF && n)
{
maxi = ;
for(i=;i<=n;i++)
scanf("%d%d",&p[i].x,&p[i].y);
sort(p+,p+n+,cmp1); //....离散
for(i=;i<=n;i++)
{
if(p[i].x == p[i-].x) a[i] = a[i-];
else a[i] = a[i-]+;
}
for(i=;i<=n;i++) p[i].x = a[i];
sort(p+,p+n+,cmp2);
for(i=;i<=n;i++)
{
if(p[i].y == p[i-].y) b[i] = b[i-];
else b[i] = b[i-]+;
maxi = max(maxi,b[i]);
}
for(i=;i<=n;i++) p[i].y = b[i]; //离散....
memset(L,,sizeof(L));
memset(R,,sizeof(R));
for(i=;i<=n;i++)
modify(R,p[i].y,);
int Stan = -,ollie,stan,start = ;
sort(p+,p+n+,cmp1);
p[n+].x = -,p[n+].y = -;
set<int> Ollie;
for(i=;i<=n+;i++)
{
if(p[i].x == p[i-].x) continue;
stan = ollie = -;
for(j=start;j<i;j++)
modify(R,p[j].y,-);
for(j=start;j<i;j++)
{
int pos = p[j].y;
int STAN = getsum(R,maxi)-getsum(R,pos)+getsum(L,pos-); //右上+左下
int OLLIE = getsum(L,maxi)-getsum(L,pos)+getsum(R,pos-); //左上+右下
if(OLLIE == ollie) stan = min(stan,STAN); //在保证Ollie取最多的情况下让Stan得分最少
else if(OLLIE > ollie) stan = STAN, ollie = OLLIE;
}
if(stan > Stan) Stan = stan, Ollie.clear(), Ollie.insert(ollie);
else if(stan == Stan) Ollie.insert(ollie);
for(j=start;j<i;j++)
modify(L,p[j].y,);
start = i;
}
printf("Stan: %d; Ollie:",Stan);
for(set<int>::iterator it=Ollie.begin();it!=Ollie.end();it++)
printf(" %d",*it);
printf(";\n");
}
return ;
}
POJ 2464 Brownie Points II --树状数组的更多相关文章
- hdu 1156 && poj 2464 Brownie Points II (BIT)
2464 -- Brownie Points II Problem - 1156 hdu分类线段树的题.题意是,给出一堆点的位置,stan和ollie玩游戏,stan通过其中一个点画垂线,ollie通 ...
- POJ 2464 Brownie Points II (树状数组,难题)
题意:在平面直角坐标系中给你N个点,stan和ollie玩一个游戏,首先stan在竖直方向上画一条直线,该直线必须要过其中的某个点,然后ollie在水平方向上画一条直线,该直线的要求是要经过一个sta ...
- POJ 2464 Brownie Points II(树状数组)
一开始还以为对于每根竖线,只要与过了任意一点的横线相交都可以呢,这样枚举两条线就要O(n^2),结果发现自己想多了... 其实是每个点画根竖线和横线就好,对于相同竖线统计(一直不包含线上点)右上左下总 ...
- POJ - 2464 Brownie Points II 【树状数组 + 离散化】【好题】
题目链接 http://poj.org/problem?id=2464 题意 在一个二维坐标系上 给出一些点 Stan 先画一条过一点的水平线 Odd 再画一条 过Stan那条水平线上的任一点的垂直线 ...
- UVA 10869 - Brownie Points II(树阵)
UVA 10869 - Brownie Points II 题目链接 题意:平面上n个点,两个人,第一个人先选一条经过点的垂直x轴的线.然后还有一个人在这条线上穿过的点选一点作垂直该直线的线,然后划分 ...
- POJ 2155 Matrix(二维树状数组,绝对具体)
Matrix Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 20599 Accepted: 7673 Descripti ...
- poj 3321:Apple Tree(树状数组,提高题)
Apple Tree Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 18623 Accepted: 5629 Descr ...
- POJ 2299 Ultra-QuickSort 逆序数 树状数组 归并排序 线段树
题目链接:http://poj.org/problem?id=2299 求逆序数的经典题,求逆序数可用树状数组,归并排序,线段树求解,本文给出树状数组,归并排序,线段树的解法. 归并排序: #incl ...
- poj 3321 Apple Tree(一维树状数组)
题目:http://poj.org/problem?id=3321 题意: 苹果树上n个分叉,Q是询问,C是改变状态.... 开始的处理比较难,参考了一下大神的思路,构图成邻接表 并 用DFS编号 白 ...
随机推荐
- 数据库==>>数据查询基础
数据查询基础 还好吗?几天不见,甚是思念呀!笑对人生,好好生活,快快乐乐的迎接我们的美好未来吧! 好吧!抒情结束,我们一起来学习一下我们今天的主题:数据查询基础,很有意思哟.让我们来感受它的魅力吧! ...
- ahjesus让nodejs支持dotjs模板
经过几天的实验加搜索,终于知道一个中间件可以解决这个问题了 npm install consolidate consolidate传送门 传送门2使用说明传送门快照:ahjesus Since doT ...
- API的非向后兼容性无论如何通常代表着一种比较差的设计
不管一个类库或者工具方法实现多么的好,如果无法做到向后兼容性,通常会给用户带来很大的升级成本,很多对此的依赖如果希望在后续的升级和维护期间使用该类库的其他新增特性或者好处,将不得不推迟升级亦或是被迫接 ...
- jquery对javascript事件的封装一览
描述 jquery javascript 鼠标点击某个对象 click() onclick 鼠标双击某个对象 dblclick() ondblclick 元素获得焦点 focus() onfocus ...
- Android 自定义带刻度的seekbar
自定义带刻度的seekbar 1.布局 <span style="font-family:SimHei;font-size:18px;"><com.imibaby ...
- unity下载文件二(http同步下载)
说到下载,其实C#里的网络模块,真的是被各种封装,最终就看你对这个语言中库的熟悉程度了. 抛开C#中IO效率的弊病不说,真的很容易,记住,太过于注重效率或者追求极致,你将会死的很惨,有时候折中才是最好 ...
- HTML列表元素
HTML定义了3类列表: 1.有序列表(通常用数字编号) 2.无序列表(通常前面加原点) 3.自定义列表(列表项目,带有集成的定义) 有序列表和无序列表均为列表中的每一项使用列表项元素(<li& ...
- IOS开发之功能模块--自定义导航控制器类常用自定义的代码
前言:本文篇幅不多,但是涉及到的内容却是开发中常用的. 涉及的内容: 1.统一设置导航控制器子控制器的返回按钮. 2.因为修改了系统的返回按钮,所以还需要设置手势事件. 3.隐藏底部的工具条. 这里直 ...
- (网络层)IP 协议首部格式与其配套使用的四个协议(ARP,RARP,ICMP,IGMP)
目录 IP协议首部格式地址解析协议 ARP逆向地址解析协议 RARP网际控制报文协议 ICMP网际组管理协议IGMP IP 数据报首部 IP数据报首部格式: 最高位在左边,记为0 bit:最低位在右边 ...
- 大家一起和snailren学java-(五)访问控制权限
“感觉中间断了一天,可是数数好像又没断……(-_^)” 这一天我们来再次细致讨论一下java的访控机制.java的访控机制其实在编程架构上非常实用的,也就是所谓的隐藏具体实现或者封装. 首先看看使用场 ...