HDU 4578 Transformation (线段树区间多种更新)
http://acm.hdu.edu.cn/showproblem.php?pid=4578
题目大意:对于一个给定序列,序列内所有数的初始值为0,有4种操作。1:区间(x, y)内的所有数字全部加上C;2:区间(x, y)内所有数字全部乘C; 3:区间(x, y)内的所有数字全部重置为C;
4:输出区间(x, y)内所有数字的P次方的和。由于题目为多实例(至少10组样例),故很耿直的更新到叶子节点明显会TLE;因此需优化。可发现题目所有操作都是对区间进行,因此只需要更新
到区间内数字相同即可。再者注意可进行状态压缩,不需要的累加和累乘只标记即可,需要此部分时再往下更新;更新时先更新3,因为3会覆盖掉1和2;之后再进行累乘,因为累乘影响累加,累
加不影响累乘。注意细节即可。
///至少10组样例,则八秒实际上不多,需优化。
///由于所有操作都是对区间进行,故数字保存情况为
///分区间相同,因此只需要操作到区间数字相同时即可,不必处理到最下面的叶子节点
#include <stdio.h>
#include <algorithm>
using namespace std;
#define N 110000
#define mod 10007
#define lson rt<<1
#define rson rt<<1|1
struct tree
{
int l, r, add, mul, op, num;
///add记录累加的数,mul记录累乘的数,op记录操作的状态
///op为1表示区间内数字相同,op为0表示区间内数字不同,需向下
///继续进行操作,op为2表示区间被重新赋值,需向下更新(操作3)。
int len()
{
return r-l+1;
}
}a[N<<2];
void build(int l, int r, int rt)///初始化
{
a[rt].l = l;
a[rt].r = r;
a[rt].mul = a[rt].op = 1;
a[rt].add = a[rt].num = 0;
if(l==r)return ;
int mid = (l+r)/2;
build(l, mid, lson);
build(mid+1, r, rson);
}
void Change(int rt, int op, int k)
{
if(op==3)///重新赋值,即再次初始化
{
a[rt].num = k%mod;
a[rt].mul = 1;
a[rt].add = 0;
a[rt].op = 2;///重新赋值后子区间所有都重新覆盖
}
else if(op==2)
{
(a[rt].add *= k) %= mod;
(a[rt].mul *= k) %= mod;
(a[rt].num *= k) %= mod;
}
else
{
(a[rt].add += k) %= mod;
(a[rt].num += k) %= mod;
}
} void Up(int rt)
{
if(a[lson].op && a[rson].op)///若子区间为同数字区间且两子区间数字相同,
if(a[lson].num == a[rson].num)///则可向上合并给父区间
{
a[rt].num = a[lson].num;
a[rt].op = 1;
}
} void Down(int rt)///向下的状态压缩,若不需此区间作答此区间暂时储存;
{ ///若需此区间作答则向下更新一层直到叶子节点
if(a[rt].l != a[rt].r)
{
if(a[rt].op==2)
{
a[lson].num = a[rson].num = a[rt].num; a[lson].op = a[rson].op = 2;
a[lson].add = a[rson].add = 0;
a[lson].mul = a[rson].mul = 1; a[rt].add = 0;
a[rt].mul = 1;
a[rt].op = 1;
} if(a[rt].mul>1)///注意此处,先更新乘法,因为累乘会影响累加的状态
{
(a[lson].num *= a[rt].mul) %= mod;
(a[lson].add *= a[rt].mul) %= mod;
(a[lson].mul *= a[rt].mul) %= mod; (a[rson].num *= a[rt].mul) %= mod;
(a[rson].add *= a[rt].mul) %= mod;
(a[rson].mul *= a[rt].mul) %= mod; a[rt].mul = 1;
} if(a[rt].add)
{
(a[lson].num += a[rt].add) %= mod;
(a[lson].add += a[rt].add) %= mod; (a[rson].num += a[rt].add) %= mod;
(a[rson].add += a[rt].add) %= mod; a[rt].add = 0;
}
}
}
void Update(int rt, int op, int l, int r, int k)
{
if(a[rt].l==l && a[rt].r==r && a[rt].op)///找到数字相同区间
{
Change(rt, op, k);///执行操作
return ;
} Down(rt);
a[rt].op = 0;///假设默认区间数字已改变,标记为不同。 int mid = (a[rt].l + a[rt].r)/2;
if(mid>=r)Update(lson, op, l, r, k);
else if(mid<l)Update(rson, op, l, r, k);
else
{
Update(lson, op, l, mid, k);
Update(rson, op, mid+1, r, k);
} Up(rt);///执行操作后向上回溯,用已得到的子区间反馈负区间的状态
}
int Query(int rt, int l, int r, int p)
{
if(a[rt].l==l && a[rt].r==r && a[rt].op)///找到同数字区间即可计算
{
int ans = 1;
for(int i=1; i<=p; i++)///一个p次方
(ans *= a[rt].num) %= mod;
ans = (ans * a[rt].len())%mod; ///区间内所有p次方
return ans;
} Down(rt); int mid = (a[rt].l + a[rt].r)/2; if(mid>=r)return Query(lson, l, r, p);
else if(mid<l)return Query(rson, l, r, p);
else
{
int lans = Query(lson, l, mid, p);
int rans = Query(rson, mid+1, r, p);
return (lans+rans)%mod;
}
}
int main()
{
int n, m;
while(scanf("%d %d", &n, &m), m+n)
{
build(1, n, 1);
int op, l, r, k;
while(m--)
{
scanf("%d %d %d %d", &op, &l, &r, &k);
if(op!=4)Update(1, op, l, r, k);///只要不为4都是更新操作
else printf("%d\n", Query(1, l, r, k));
}
}
return 0;
}
HDU 4578 Transformation (线段树区间多种更新)的更多相关文章
- hdu 4578 Transformation 线段树多种操作裸题
自己写了一个带结构体的WA了7.8次 但是测了几组小数据都对..感觉问题应该出在模运算那里.写完这波题解去对拍一下. 以后线段树绝不写struct!一般的struct都带上l,r 但是一条线段的长度确 ...
- HDU 4578 Transformation --线段树,好题
题意: 给一个序列,初始全为0,然后有4种操作: 1. 给区间[L,R]所有值+c 2.给区间[L,R]所有值乘c 3.设置区间[L,R]所有值为c 4.查询[L,R]的p次方和(1<=p< ...
- hdu 4578 Transformation 线段树
没什么说的裸线段树,注意细节就好了!!! 代码如下: #include<iostream> #include<stdio.h> #include<algorithm> ...
- hdu 4031 attack 线段树区间更新
Attack Time Limit: 5000/3000 MS (Java/Others) Memory Limit: 65768/65768 K (Java/Others)Total Subm ...
- hdu 5475 An easy problem(暴力 || 线段树区间单点更新)
http://acm.hdu.edu.cn/showproblem.php?pid=5475 An easy problem Time Limit: 8000/5000 MS (Java/Others ...
- HDU 3308 LCIS (线段树·单点更新·区间合并)
题意 给你一个数组 有更新值和查询两种操作 对于每次查询 输出相应区间的最长连续递增子序列的长度 基础的线段树区间合并 线段树维护三个值 相应区间的LCIS长度(lcis) 相应区间以左 ...
- HDU 3308 LCIS (线段树区间合并)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3308 题目很好懂,就是单点更新,然后求区间的最长上升子序列. 线段树区间合并问题,注意合并的条件是a[ ...
- hdu 4747【线段树-成段更新】.cpp
题意: 给出一个有n个数的数列,并定义mex(l, r)表示数列中第l个元素到第r个元素中第一个没有出现的最小非负整数. 求出这个数列中所有mex的值. 思路: 可以看出对于一个数列,mex(r, r ...
- hdu 5023(线段树区间染色,统计区间内颜色个数)
题目描述:区间染色问题,统计给定区间内有多少种颜色? 线段树模板的核心是对标记的处理 可以记下沿途经过的标记,到达目的节点之后一块算,也可以更新的时候直接更新到每一个节点 Lazy操作减少修改的次数( ...
随机推荐
- MongoDB 备份(mongodump)恢复(mongorerstore) 导出 (Mongoexport) 导入( Mongoimport)
MongoDB 备份(mongodump) 在Mongodb中我们使用mongodump命令来备份MongoDB数据.该命令可以导出所有数据到指定目录中. mongodump命令可以通过参数指定导出的 ...
- Type Project has no default.properties file! Edit the project properties to set one.
Description Resource Path Location Type Project has no default.properties file! Edit the project pro ...
- [solr] - 环境搭建2
前面使用Tomcat搭建solr,参考文章: http://www.cnblogs.com/HD/p/3977799.html 原来solr可以不使用tomcat/jboss等服务器,它自身已经集成了 ...
- 3D Touch集成过程整理
1.集成App图标按压快速打开某个功能 在AppDelegate.m中加入以下三个东西 在启动方法里加入3D Touch菜单 - (BOOL)application:(UIApplication *) ...
- Spring学习 Ioc篇(三)
1.在注解注入方式中,首先要在xml中引入如下的红线的命名空间: <?xml version="1.0" encoding="UTF-8" ?> & ...
- sqlite_
应用程序初始化时需要批量的向sqlite中插入大量数据,单独的使用for+Insert方法导致应用响应缓慢,因为 sqlite插入数据的时候默认一条语句就是一个事务,有多少条数据就有多少次磁盘操作.我 ...
- PHP发送请求头和接收打印请求头
一.发送请求头 //发送地址 $url = 'http://127.0.0.1/2.php'; //请求头内容 $headers = array( 'Authorization: '.$basic, ...
- 关于@Html.Action()的异常“控制器或该控制器未实现 IController。”
解决之前: @Html.Action("BottomHelp", "Articles", new { num = 5}) 解决之后: @Html.Action( ...
- 每天一个 Linux 命令(5):rm 命令
昨天学习了创建文件和目录的命令mkdir ,今天学习一下linux中删除文件和目录的命令: rm命令.rm是常用的命令,该命令的功能为删除一个目录中的一个或多个文件或目录,它也可以将某个目录及其下的所 ...
- (String)将一个String里面的单词反转
e.g. i love java return java love i public static String reverseStr(String str) { String[] str ...