更新、更全的《机器学习》的更新网站,更有python、go、数据结构与算法、爬虫、人工智能教学等着你:https://www.cnblogs.com/nickchen121/p/11686958.html

AdaBoost算法代码(鸢尾花分类)

一、导入模块

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from matplotlib.font_manager import FontProperties
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import AdaBoostClassifier
%matplotlib inline
font = FontProperties(fname='/Library/Fonts/Heiti.ttc')

二、导入数据

X = iris_data.data[:, [2, 3]]
y = iris_data.target
label_list = ['山鸢尾', '杂色鸢尾', '维吉尼亚鸢尾']

三、构造决策边界

def plot_decision_regions(X, y, classifier=None):
marker_list = ['o', 'x', 's']
color_list = ['r', 'b', 'g']
cmap = ListedColormap(color_list[:len(np.unique(y))]) x1_min, x1_max = X[:, 0].min()-1, X[:, 0].max()+1
x2_min, x2_max = X[:, 1].min()-1, X[:, 1].max()+1
t1 = np.linspace(x1_min, x1_max, 666)
t2 = np.linspace(x2_min, x2_max, 666) x1, x2 = np.meshgrid(t1, t2)
y_hat = classifier.predict(np.array([x1.ravel(), x2.ravel()]).T)
y_hat = y_hat.reshape(x1.shape)
plt.contourf(x1, x2, y_hat, alpha=0.2, cmap=cmap)
plt.xlim(x1_min, x1_max)
plt.ylim(x2_min, x2_max) for ind, clas in enumerate(np.unique(y)):
plt.scatter(X[y == clas, 0], X[y == clas, 1], alpha=0.8, s=50,
c=color_list[ind], marker=marker_list[ind], label=label_list[clas])

四、训练模型

4.1 训练模型(n_e=10, l_r=0.8)

adbt = AdaBoostClassifier(DecisionTreeClassifier(max_depth=2, min_samples_split=20, min_samples_leaf=5),
algorithm="SAMME", n_estimators=10, learning_rate=0.8)
adbt.fit(X, y)
AdaBoostClassifier(algorithm='SAMME',
base_estimator=DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=2,
max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=5, min_samples_split=20,
min_weight_fraction_leaf=0.0, presort=False, random_state=None,
splitter='best'),
learning_rate=0.8, n_estimators=10, random_state=None)

4.2 可视化

plot_decision_regions(X, y, classifier=adbt)
plt.xlabel('花瓣长度(cm)', fontproperties=font)
plt.ylabel('花瓣宽度(cm)', fontproperties=font)
plt.title('AdaBoost算法代码(鸢尾花分类, n_e=10, l_r=0.8)',
fontproperties=font, fontsize=20)
plt.legend(prop=font)
plt.show()

print("Score:{}".format(adbt.score(X, y)))
Score:0.9866666666666667

4.3 训练模型(n_estimators=300, learning_rate=0.8)

adbt = AdaBoostClassifier(DecisionTreeClassifier(max_depth=2, min_samples_split=20, min_samples_leaf=5),
algorithm="SAMME", n_estimators=300, learning_rate=0.8)
adbt.fit(X, y)
print("Score:{}".format(adbt.score(X, y)))
Score:0.9933333333333333

由于样本太少,可能效果不明显,但是对比上一个模型可以发现,相同步长的情况下,如果弱学习个数越多,拟合效果越好,但如果过多则可能过拟合。

4.4 训练模型(n_estimators=300, learning_rate=0.5)

adbt = AdaBoostClassifier(DecisionTreeClassifier(max_depth=2, min_samples_split=20, min_samples_leaf=5),
algorithm="SAMME", n_estimators=300, learning_rate=0.001)
adbt.fit(X, y)
print("Score:{}".format(adbt.score(X, y)))
Score:0.9533333333333334

相同迭代次数的情况下,对比上一个模型可以发现,如果步长越大,则模型效果越好。

4.5 训练模型(n_estimators=600, learning_rate=0.7)

adbt = AdaBoostClassifier(DecisionTreeClassifier(max_depth=2, min_samples_split=20, min_samples_leaf=5),
algorithm="SAMME", n_estimators=600, learning_rate=0.8)
adbt.fit(X, y)
print("Score:{}".format(adbt.score(X, y)))
Score:0.9933333333333333

对比第二个模型,可以发现即使增加迭代次数,算法准确率也没有提高,所以n_estimators=300的时候其实算法就已经收敛了。

04-04 AdaBoost算法代码(鸢尾花分类)的更多相关文章

  1. [Python]基于K-Nearest Neighbors[K-NN]算法的鸢尾花分类问题解决方案

    看了原理,总觉得需要用具体问题实现一下机器学习算法的模型,才算学习深刻.而写此博文的目的是,网上关于K-NN解决此问题的博文很多,但大都是调用Python高级库实现,尤其不利于初级学习者本人对模型的理 ...

  2. Spark ML下实现的多分类adaboost+naivebayes算法在文本分类上的应用

    1. Naive Bayes算法 朴素贝叶斯算法算是生成模型中一个最经典的分类算法之一了,常用的有Bernoulli和Multinomial两种.在文本分类上经常会用到这两种方法.在词袋模型中,对于一 ...

  3. AdaBoost 算法-分析波士顿房价数据集

    公号:码农充电站pro 主页:https://codeshellme.github.io 在机器学习算法中,有一种算法叫做集成算法,AdaBoost 算法是集成算法的一种.我们先来看下什么是集成算法. ...

  4. SIGAI机器学习第二十集 AdaBoost算法1

    讲授Boosting算法的原理,AdaBoost算法的基本概念,训练算法,与随机森林的比较,训练误差分析,广义加法模型,指数损失函数,训练算法的推导,弱分类器的选择,样本权重削减,实际应用 AdaBo ...

  5. 集成学习值Adaboost算法原理和代码小结(转载)

    在集成学习原理小结中,我们讲到了集成学习按照个体学习器之间是否存在依赖关系可以分为两类: 第一个是个体学习器之间存在强依赖关系: 另一类是个体学习器之间不存在强依赖关系. 前者的代表算法就是提升(bo ...

  6. 【图像处理】Haar Adaboost 检测自定义目标(视频车辆检测算法代码)

    阅读须知 本博客涉及到的资源: 正样本:http://download.csdn.net/detail/zhuangxiaobin/7326197 负样本:http://download.csdn.n ...

  7. Adaboost算法及其代码实现

    . . Adaboost算法及其代码实现 算法概述 AdaBoost(adaptive boosting),即自适应提升算法. Boosting 是一类算法的总称,这类算法的特点是通过训练若干弱分类器 ...

  8. 【AdaBoost算法】积分图代码实现

    一.积分图介绍 定义:图像左上方的像素点值的和: 在Adaboost算法中可用于加速计算Haar或MB-LBP特征值,如下图: 二.代码实现 #include <opencv/highgui.h ...

  9. 02-19 k近邻算法(鸢尾花分类)

    [TOC] 更新.更全的<机器学习>的更新网站,更有python.go.数据结构与算法.爬虫.人工智能教学等着你:https://www.cnblogs.com/nickchen121/ ...

随机推荐

  1. 【Offer】[8] 【中序遍历的下一个结点】

    题目描述 思路分析 Java代码 代码链接 题目描述 给定一棵二叉树和其中的一个结点,如何找出中序遍历顺序的下一个结点? 树中的结点除了有两个分别指向左右子结点的指针以外,还有一个指向父结点的指针. ...

  2. Go语言基础之指针

    区别于C/C++中的指针,Go语言中的指针不能进行偏移和运算,是安全指针. 要搞明白Go语言中的指针需要先知道3个概念:指针地址.指针类型和指针取值. Go语言中的指针 Go语言中的函数传参都是值拷贝 ...

  3. Nginx实现高可用(了解)

    使用nginx实现反向代理和负载均衡时,nginx就是整个网站的入口了,所以需要保证nginx的高可用 主要资料包:链接:https://pan.baidu.com/s/1z_-xEM3uUICtZi ...

  4. math库的使用

    math库简介 math库是Python提供的内置数学内函数库,因为复数类型常用于科学计算,一般计算并不常用,因此math库不支持复数类型,仅支持整数和浮点数运算,math库一共提供4个数学常数和44 ...

  5. 洛谷 P1101单词方阵

    我已经,是这个世界上,最幸福的女孩了                                                                         ——<末日时 ...

  6. Python集训营45天—Day04 (函数)

    目录 1. 函数介绍 2. 函数的参数 3. 模块与函数 4. 递归函数 5. 匿名函数 6. 多返回值 python 的学习已经进入到第四天,前面几章我们已经学会了基本的变量操作,以及分支结构和循环 ...

  7. C++ std::thread概念介绍

    C++ 11新标准中,正式的为该语言引入了多线程概念.新标准提供了一个线程库thread,通过创建一个thread对象来管理C++程序中的多线程. 本文简单聊一下C++多线程相关的一些概念及threa ...

  8. asp.net core系列 73 Exceptionless+Nlog以及Apollo介绍

    一. 介绍 在一上篇中介绍了Exceptionless的基本使用,这篇主要讲Exceptionless结合Nlog的实现双重日志记录,包括Exceptionles的UI可视化日志以及Nlog的txt文 ...

  9. Hadoop入门 之 Hadoop常识

    1.Hadoop是什么? 答:Hadoop是开源的分布式存储和分布式计算平台. 2.Hadoop的组成是什么? 答:Hadoop由HDFS和MapReduce这两个核心部分组成. HDFS(Hadoo ...

  10. jvm对象内存分配

    一.jvm简单结构图 1.jvm内存对象分配整体流程: 1.类加载子系统和方法区 类加载子系统负责从文件系统或者网络中加载Class信息,加载的类信息存放于一块称为方法区的内存空间.除了类的信息外, ...