upd 2019.12.10 latex和markdown化

题意

解析:

先考虑暴力:将每个区间求出来,放进一个堆里,取出前k个就是答案。

期望得分:20,原因:TLE

code(对,我真写了):

#include<bits/stdc++.h>
using namespace std;
const int maxn=5*1e5+10;
int n,k,L,R,ans;
int sum[maxn];
priority_queue<int> q;
int main()
{
scanf("%d%d%d%d",&n,&k,&L,&R);
for(int i=1;i<=n;i++) scanf("%d",&sum[i]),sum[i]+=sum[i-1];
for(int i=1;i<=n;i++)
for(int j=i;j<=n;j++)
if(j-i+1>=L&&j-i+1<=R) q.push(sum[j]-sum[i-1]);
for(int i=1;i<=k;i++) ans+=q.top(),q.pop();
printf("%d",ans);
return 0;
}

考虑优化,先看这道题

这道题中我们并没有将所有的组合全部求出,而是先将一些最优解放入堆中,取出后放入次于它的最优解来更新。

这道题也可以用相同的方法来优化。

首先区间和肯定用前缀和优化了。

我们先固定左端点,将从每个点向右的最优解放入,记为四元组:\((x,l,r,t)\),\(x\)是左端点,\(l\)和\(r\)是右端点的范围,t是当前解的右端点的位置。求解该区间的最优解可以用ST表解决。

将这些数放入后,我们每从堆中取出一个四元组\((x,l,r,t)\),加上它的答案后,向堆中放入\((x,l,t-1,query(l,t-1))\)和\((x,t+1,query(t+1,r))\)(相当于放入对于\(x\)的\([l,r]\)区间除去\(t\)后的最优解,注意判断\(l,r\)是否为\(t\))

取\(k\)次即为答案。

之前做过的题思想还是要记住的~

code:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=5*1e5+10;
int n,k,L,R;
int st[maxn][30];
ll ans;
ll sum[maxn];
void init()
{
for(int i=1;i<=n;i++) st[i][0]=i;
int t=(int)log2(n);
for(int j=1;j<=t;j++)
for(int i=1;i+(1<<j)-1<=n;i++)
{
int x=st[i][j-1],y=st[i+(1<<(j-1))][j-1];
st[i][j]=sum[x]>sum[y]?x:y;
}
}
int query(int l,int r)
{
int k=(int)log2(r-l+1);
int x=st[l][k],y=st[r-(1<<k)+1][k];
return sum[x]>sum[y]?x:y;
}
struct node
{
int x,l,r,t;
bool operator < (const node& y)const
{
return sum[t]-sum[x-1]<sum[y.t]-sum[y.x-1];
}
};
priority_queue<node> q;
int main()
{
scanf("%d%d%d%d",&n,&k,&L,&R);
for(int i=1;i<=n;i++) scanf("%lld",&sum[i]),sum[i]+=sum[i-1];
init();
//puts("1111");
for(int i=1;i<=n;i++)
if(i+L-1<=n) q.push((node){i,i+L-1,min(n,i+R-1),query(i+L-1,min(n,i+R-1))});//puts("111");
//puts("11");
while(k--)
{
int x=q.top().x,l=q.top().l,r=q.top().r,t=q.top().t;
// printf("%d %d %d %d\n",x,l,r,t);
q.pop();ans+=sum[t]-sum[x-1];
//puts("111");
if(l!=t) q.push((node){x,l,t-1,query(l,t-1)});
if(r!=t) q.push((node){x,t+1,r,query(t+1,r)});
//puts("111");
}
printf("%lld",ans);
return 0;
}

luoguP2048 [NOI2010]超级钢琴的更多相关文章

  1. BZOJ 2006: [NOI2010]超级钢琴

    2006: [NOI2010]超级钢琴 Time Limit: 20 Sec  Memory Limit: 552 MBSubmit: 2613  Solved: 1297[Submit][Statu ...

  2. Bzoj 2006: [NOI2010]超级钢琴 堆,ST表

    2006: [NOI2010]超级钢琴 Time Limit: 20 Sec  Memory Limit: 552 MBSubmit: 2222  Solved: 1082[Submit][Statu ...

  3. NOI2010超级钢琴 2

    2006: [NOI2010]超级钢琴 Time Limit: 20 Sec  Memory Limit: 552 MBSubmit: 1296  Solved: 606[Submit][Status ...

  4. BZOJ 2006: [NOI2010]超级钢琴( RMQ + 堆 )

    取最大的K个, 用堆和RMQ来加速... ----------------------------------------------------------------- #include<c ...

  5. BZOJ_2006_[NOI2010]超级钢琴_贪心+堆+ST表

    BZOJ_2006_[NOI2010]超级钢琴_贪心+堆+ST表 Description 小Z是一个小有名气的钢琴家,最近C博士送给了小Z一架超级钢琴,小Z希望能够用这架钢琴创作出世界上最美妙的 音乐 ...

  6. bzoj2006 [NOI2010]超级钢琴 (及其拓展)

    bzoj2006 [NOI2010]超级钢琴 给定一个序列,求长度在 \([L,\ R]\) 之间的区间和的前 \(k\) 大之和 \(n\leq5\times10^5,\ k\leq2\times1 ...

  7. P2048 [NOI2010]超级钢琴(RMQ+堆+贪心)

    P2048 [NOI2010]超级钢琴 区间和--->前缀和做差 多次查询区间和最大--->前缀和RMQ 每次取出最大的区间和--->堆 于是我们设个3元组$(o,l,r)$,表示左 ...

  8. 洛谷 P2048 [NOI2010]超级钢琴 解题报告

    P2048 [NOI2010]超级钢琴 题目描述 小Z是一个小有名气的钢琴家,最近C博士送给了小Z一架超级钢琴,小Z希望能够用这架钢琴创作出世界上最美妙的音乐. 这架超级钢琴可以弹奏出n个音符,编号为 ...

  9. bzoj千题计划162:bzoj2006: [NOI2010]超级钢琴

    http://www.lydsy.com/JudgeOnline/problem.php?id=2006 输出最大的k个 sum[r]-sum[l-1] (L<=r-l+1<=R) 之和 ...

随机推荐

  1. bzoj5219 [Lydsy2017省队十连测] 最长路径

    题意: 做法来自 首先竞赛图缩点后是一条链,\(1\)号节点在开头的那个\(SCC\)中,因此从\(1\)号节点出发的最长链即为\(1\)号节点所在的\(SCC\)的大小\(+1\)号节点拓扑序之后的 ...

  2. .NET 时间轴:从出生到巨人

    自1995年互联网战略日以来最雄心勃勃的事业 —— 微软.NET战略, 2000年6月30日. 微软于2000年推出基于Windows操作系统的应用软件开发框架.NET,发展至今形成巨大的技术栈,涉及 ...

  3. Python变量与内存管理

    Python变量与内存管理 –与C语言中的变量做对比,更好的理解Python的变量. 变量 变量在C语言中  全局变量:其存放在内存的静态变量区中.  局部变量:代码块中存放在内存的代码区当中,当被调 ...

  4. 《js高程》笔记总结一:基本概念(语法,数据类型,流程控制,函数)

    1.ECMA 欧洲计算机制造商协会 2.";"的作用 代码后的:当压缩代码时可以用于压缩代码,有效的间隔开代码. 3.数据类型有 undefined,null,boolean,st ...

  5. IT兄弟连 Java语法教程 流程控制语句 分支结构语句2

    2  if-else条件语句 if-else语句的完整形式如下: if(判断条件){ A代码块(判断条件的值为true,执行) }else{ B代码块(判断条件的值为false,执行) } 当然,如果 ...

  6. mysql常用命令杂记

    查看版本 mysqladmin -uRootmaster -pRootmaster@777 versionselect version() 查看Log_bin是否开启 show variables l ...

  7. javascript解决在safari浏览器中使用history.back()返回上一页后页面不会刷新的问题

    我们知道,在JavaScript中提供了一个window.history.back()方法用于返回上一页,另外也可以使用window.history.go(-1)返回上一页(跳转). 在其他的主流浏览 ...

  8. ElasticSearch安装中文分词器IK

    1.安装IK分词器,下载对应版本的插件,elasticsearch-analysis-ik中文分词器的开发者一直进行维护的,对应着elasticsearch的版本,所以选择好自己的版本即可.IKAna ...

  9. ES6语法:let和const

    ES6新增加了两个重要的JavaScript关键字:let和const 一.let关键字 let声明的变量只在let命令所在的代码块内有效. 1.基本语法 let a='123' 2.let和var的 ...

  10. linux shell通过curl获取HTTP请求的状态码

    直接上代码: curl -I -m -o /dev/null -s -w %{http_code} www.baidu.com 参数说明: -I 仅测试HTTP头 -m 10 最多查询10s -o / ...