题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1074

题意:有n个城市,每一个城市有一个拥挤度ai,从一个城市I到另一个城市J的时间为:(aJ-aI)^3,存在负环。问从第一个城市到达第k个城市所花的时间,如果不能到达,或者时间小于3输出?否则输出所花的时间

只要用spfa判断一下负环然后和负环上点相关联的点都可以实现距离无线小所以如果是关联点标记一下。

如果遇到标记点就没有必要再入队,减少复杂度

#include <iostream>
#include <cstring>
#include <string>
#include <cmath>
#include <cstdio>
#include <queue>
using namespace std;
const long long inf = 999999999;
int n , m , q , x , y;
long long val[210] , dis[210];
long long GETS(int x , int y) {
return (val[x] - val[y]) * (val[x] - val[y]) * (val[x] - val[y]);
}
struct TnT {
int u , v , next;
long long w;
}T[40050];
int head[210] , cnt[210] , e;
void init() {
e = 0;
for(int i = 1 ; i <= n ; i++) {
head[i] = -1;
}
}
void add(int u , int v , long long w) {
T[e].v = v;
T[e].w = w;
T[e].next = head[u];
head[u] = e++;
}
bool vis[210] , cir[210];
void dfs(int x) {
cir[x] = true;
for(int i = head[x] ; i != - 1 ; i = T[i].next) {
if(!cir[T[i].v]) {
dfs(T[i].v);
}
}
}
void spfa(int sta) {
memset(vis , false , sizeof(vis));
memset(cnt , 0 , sizeof(cnt));
memset(cir , false , sizeof(cir));
queue<int>q;
q.push(sta);
cnt[sta]++;
vis[sta] = true;
dis[sta] = 0;
while(!q.empty()) {
int m = q.front();
vis[m] = false;
q.pop();
for(int i = head[m] ; i != - 1 ; i = T[i].next) {
int v = T[i].v ;
long long w = T[i].w;
if(cir[v])
continue;
if(dis[v] > dis[m] + w) {
dis[v] = dis[m] + w;
if(!vis[v]) {
cnt[v]++;
vis[v] = true;
q.push(v);
if(cnt[v] > n)
dfs(v);
}
}
}
}
}
int main() {
int t , ans = 0 , gg;
scanf("%d" , &t);
while(t--) {
ans++;
scanf("%d" , &n);
for(int i = 1 ; i <= n ; i++) {
dis[i] = inf;
}
init();
for(int i = 1 ; i <= n ; i++) {
scanf("%lld" , &val[i]);
}
scanf("%d" , &m);
for(int i = 1 ; i <= m ; i++) {
scanf("%d%d" , &x , &y);
add(x , y , GETS(y , x));
}
printf("Case %d:\n" , ans);
scanf("%d" , &q);
spfa(1);
for(int i = 1 ; i <= q ; i++) {
scanf("%d" , &gg);
if(cir[gg] || dis[gg] == inf || dis[gg] < 3) {
printf("?\n");
}
else {
printf("%lld\n" , dis[gg]);
}
}
}
return 0;
}

lightoj 1074 - Extended Traffic(spfa+负环判断)的更多相关文章

  1. LightOJ - 1074 Extended Traffic (SPFA+负环)

    题意:N个点,分别有属于自己的N个busyness(简称b),两点间若有边,则边权为(ub-vb)^3.Q个查询,问从点1到该点的距离为多少. 分析:既然是差的三次方,那么可能有负边权的存在,自然有可 ...

  2. LightOj 1074 Extended Traffic (spfa+负权环)

    题目链接: http://lightoj.com/volume_showproblem.php?problem=1074 题目大意: 有一个大城市有n个十字交叉口,有m条路,城市十分拥挤,因此每一个路 ...

  3. LightOJ 1074 Extended Traffic(spfa+dfs标记负环上的点)

    题目链接:https://cn.vjudge.net/contest/189021#problem/O 题目大意:有n个站点,每个站点都有一个busyness,从站点A到站点B的花费为(busynes ...

  4. LightOJ 1074 Extended Traffic SPFA 消负环

    分析:一看就是求最短路,然后用dij,果断错了一发,发现是3次方,有可能会出现负环 然后用spfa判负环,然后标记负环所有可达的点,被标记的点答案都是“?” #include<cstdio> ...

  5. LightOJ 1074 - Extended Traffic (SPFA)

    http://lightoj.com/volume_showproblem.php?problem=1074 1074 - Extended Traffic   PDF (English) Stati ...

  6. spfa负环判断

    正常spfa中加入time数组,循环判断一个点是否入队并更新了n次以上注意是 > n!!其余的没有什么问题 扩展的还有,寻找所有负环上的点,这个可以在spfa中time 发现负环的时候,对那个点 ...

  7. LightOJ 1074 Extended Traffic (最短路spfa+标记负环点)

    Extended Traffic 题目链接: http://acm.hust.edu.cn/vjudge/contest/122685#problem/O Description Dhaka city ...

  8. (简单) LightOJ 1074 Extended Traffic,SPFA+负环。

    Description Dhaka city is getting crowded and noisy day by day. Certain roads always remain blocked ...

  9. SPFA(负环) LightOJ 1074 Extended Traffic

    题目传送门 题意:收过路费.如果最后的收费小于3或不能达到,输出'?'.否则输出到n点最小的过路费 分析:关键权值可为负,如果碰到负环是,小于3的约束条件不够,那么在得知有负环时,把这个环的点都标记下 ...

随机推荐

  1. mac下安装mongodb数据库教程

    前言 由于最近在学习node+express,学习到持久化存储章节需要连接mongodb数据库,然后之前也有试过安装mongodb但是失败了,这次就找了很多资料,终于安装完成了,故此记录下来安装步骤, ...

  2. c#链接数据库,查找数据信息

    using System;using System.Collections.Generic;using System.Linq;using System.Text;using System.Threa ...

  3. 利用ImageAI库只需几行python代码超简实现目标检测

    目录 什么是目标检测 目标检测算法 Two Stages One Stage python实现 依赖 安装 使用 附录 什么是目标检测 目标检测关注图像中特定的物体目标,需要同时解决解决定位(loca ...

  4. Java 8 Stream实践

    [**前面的话**]Java中的Stream于1.8版本析出,平时项目中也有用到,今天就系统的来实践一下.下面借用重庆力帆队伍中我个人比较喜欢的球员来操作一波,队员的年龄为了便于展示某些api做了调整 ...

  5. 剑指offer-链表

    1. 链表中环的入口节点 给一个链表,若其中包含环,请找出该链表的环的入口结点,否则,输出null. 思路一:用哈希表存已经遍历过的节点,O(1)复杂度查找,如果再次遇到就是环入口 # -*- cod ...

  6. Linux:oracle11.2.0dbca静默建库

    1.关闭防火墙 systemctl stop firewalld.service #停止firewall systemctl disable firewalld.service #禁止firewall ...

  7. 解决socket粘包的两种low版模式 os.popen()和struct模块

    os.popen()模式 server端 import socket import os phone = socket.socket() # 实例化一个socket对象 phone.bind((&qu ...

  8. 《机器学习技法》---AdaBoost算法

    1 AdaBoost的推导 首先,直接给出AdaBoost算法的核心思想是:在原数据集上经过取样,来生成不同的弱分类器,最终再把这些弱分类器聚合起来. 关键问题有如下几个: (1)取样怎样用数学方式表 ...

  9. forward(转发)和redirect(重定向)的区别

    在学习Servlet和JSP时,经常会使用到forward和redirect,我们先来看这两者在Servlet中的调用方式: 1.forward request.getRequestDispatche ...

  10. 快速了解Python并发编程的工程实现(下)

    关于我 一个有思想的程序猿,终身学习实践者,目前在一个创业团队任team lead,技术栈涉及Android.Python.Java和Go,这个也是我们团队的主要技术栈. Github:https:/ ...