ZGC gc策略及回收过程-源码分析
源码文件:/src/hotspot/share/gc/z/zDirector.cpp
一、回收策略
main入口函数:
- void ZDirector::run_service() {
- // Main loop
- while (_metronome.wait_for_tick()) {
- sample_allocation_rate();
- const GCCause::Cause cause = make_gc_decision();
- if (cause != GCCause::_no_gc) {
- ZCollectedHeap::heap()->collect(cause);
- }
- }
- }
- GCCause::Cause ZDirector::make_gc_decision() const {
- // Rule 0: Timer
- if (rule_timer()) {
- return GCCause::_z_timer;
- }
- // Rule 1: Warmup
- if (rule_warmup()) {
- return GCCause::_z_warmup;
- }
- // Rule 2: Allocation rate
- if (rule_allocation_rate()) {
- return GCCause::_z_allocation_rate;
- }
- // Rule 3: Proactive
- if (rule_proactive()) {
- return GCCause::_z_proactive;
- }
- // No GC
- return GCCause::_no_gc;
- }
- bool ZDirector::rule_timer() const {
- if (ZCollectionInterval == ) {
- // Rule disabled
- return false;
- }
- // Perform GC if timer has expired.
- const double time_since_last_gc = ZStatCycle::time_since_last();
- const double time_until_gc = ZCollectionInterval - time_since_last_gc;
- log_debug(gc, director)("Rule: Timer, Interval: %us, TimeUntilGC: %.3lfs",
- ZCollectionInterval, time_until_gc);
- return time_until_gc <= ;
- }
rule 2:预热规则
is_warm函数判断gc次数是否已超过3次,是则不使用该策略。
注释说的很清楚,当gc次数少于3时,判断堆使用率达到10%/20%/30%时,使用该策略
- bool ZDirector::rule_warmup() const {
- if (is_warm()) {
- // Rule disabled
- return false;
- }
- // Perform GC if heap usage passes 10/20/30% and no other GC has been
- // performed yet. This allows us to get some early samples of the GC
- // duration, which is needed by the other rules.
- const size_t max_capacity = ZHeap::heap()->current_max_capacity();
- const size_t used = ZHeap::heap()->used();
- const double used_threshold_percent = (ZStatCycle::ncycles() + ) * 0.1;
- const size_t used_threshold = max_capacity * used_threshold_percent;
- log_debug(gc, director)("Rule: Warmup %.0f%%, Used: " SIZE_FORMAT "MB, UsedThreshold: " SIZE_FORMAT "MB",
- used_threshold_percent * , used / M, used_threshold / M);
- return used >= used_threshold;
- }
- bool ZDirector::is_warm() const {
- return ZStatCycle::ncycles() >= ;
- }
- // 位置:ZStat.cpp
- uint64_t ZStatCycle::ncycles() {
- return _ncycles; // gc次数
- }
rule 3:分配速率预估
is_first函数判断如果是首次gc,则直接返回false。
ZAllocationSpikeTolerance默认值为2,分配速率策略采用正态分布模型预测内存分配速率,加上ZAllocationSpikeTolerance修正因子,可以覆盖超过99.9%的内存分配速率的可能性
- bool ZDirector::rule_allocation_rate() const {
- if (is_first()) {
- // Rule disabled
- return false;
- }
- // Perform GC if the estimated max allocation rate indicates that we
- // will run out of memory. The estimated max allocation rate is based
- // on the moving average of the sampled allocation rate plus a safety
- // margin based on variations in the allocation rate and unforeseen
- // allocation spikes.
- // Calculate amount of free memory available to Java threads. Note that
- // the heap reserve is not available to Java threads and is therefore not
- // considered part of the free memory.
- const size_t max_capacity = ZHeap::heap()->current_max_capacity();
- const size_t max_reserve = ZHeap::heap()->max_reserve();
- const size_t used = ZHeap::heap()->used();
- const size_t free_with_reserve = max_capacity - used;
- const size_t free = free_with_reserve - MIN2(free_with_reserve, max_reserve);
- // Calculate time until OOM given the max allocation rate and the amount
- // of free memory. The allocation rate is a moving average and we multiply
- // that with an allocation spike tolerance factor to guard against unforeseen
- // phase changes in the allocate rate. We then add ~3.3 sigma to account for
- // the allocation rate variance, which means the probability is 1 in 1000
- // that a sample is outside of the confidence interval.
- const double max_alloc_rate = (ZStatAllocRate::avg() * ZAllocationSpikeTolerance) + (ZStatAllocRate::avg_sd() * one_in_1000);
- const double time_until_oom = free / (max_alloc_rate + 1.0); // Plus 1.0B/s to avoid division by zero
- // Calculate max duration of a GC cycle. The duration of GC is a moving
- // average, we add ~3.3 sigma to account for the GC duration variance.
- const AbsSeq& duration_of_gc = ZStatCycle::normalized_duration();
- const double max_duration_of_gc = duration_of_gc.davg() + (duration_of_gc.dsd() * one_in_1000);
- // Calculate time until GC given the time until OOM and max duration of GC.
- // We also deduct the sample interval, so that we don't overshoot the target
- // time and end up starting the GC too late in the next interval.
- const double sample_interval = 1.0 / ZStatAllocRate::sample_hz;
- const double time_until_gc = time_until_oom - max_duration_of_gc - sample_interval;
- log_debug(gc, director)("Rule: Allocation Rate, MaxAllocRate: %.3lfMB/s, Free: " SIZE_FORMAT "MB, MaxDurationOfGC: %.3lfs, TimeUntilGC: %.3lfs",
- max_alloc_rate / M, free / M, max_duration_of_gc, time_until_gc);
- return time_until_gc <= ;
- }
- bool ZDirector::is_first() const {
- return ZStatCycle::ncycles() == ;
- }
rule 4:积极回收策略
通过ZProactive可启用积极回收策略,is_warm函数判断启用该策略必须是在预热之后(gc次数超过3次)
自上一次gc后,堆使用率达到xmx的10%或者已过了5分钟,这个参数是弥补第三个规则中没有覆盖的场景,从上述分析可以得到第三个条件更多的覆盖分配速率比较高的场景。
- bool ZDirector::rule_proactive() const {
- if (!ZProactive || !is_warm()) {
- // Rule disabled
- return false;
- }
- // Perform GC if the impact of doing so, in terms of application throughput
- // reduction, is considered acceptable. This rule allows us to keep the heap
- // size down and allow reference processing to happen even when we have a lot
- // of free space on the heap.
- // Only consider doing a proactive GC if the heap usage has grown by at least
- // 10% of the max capacity since the previous GC, or more than 5 minutes has
- // passed since the previous GC. This helps avoid superfluous GCs when running
- // applications with very low allocation rate.
- const size_t used_after_last_gc = ZStatHeap::used_at_relocate_end();
- const size_t used_increase_threshold = ZHeap::heap()->current_max_capacity() * 0.10; // 10%
- const size_t used_threshold = used_after_last_gc + used_increase_threshold;
- const size_t used = ZHeap::heap()->used();
- const double time_since_last_gc = ZStatCycle::time_since_last();
- const double time_since_last_gc_threshold = * ; // 5 minutes
- if (used < used_threshold && time_since_last_gc < time_since_last_gc_threshold) {
- // Don't even consider doing a proactive GC
- log_debug(gc, director)("Rule: Proactive, UsedUntilEnabled: " SIZE_FORMAT "MB, TimeUntilEnabled: %.3lfs",
- (used_threshold - used) / M,
- time_since_last_gc_threshold - time_since_last_gc);
- return false;
- }
- const double assumed_throughput_drop_during_gc = 0.50; // 50%
- const double acceptable_throughput_drop = 0.01; // 1%
- const AbsSeq& duration_of_gc = ZStatCycle::normalized_duration();
- const double max_duration_of_gc = duration_of_gc.davg() + (duration_of_gc.dsd() * one_in_1000);
- const double acceptable_gc_interval = max_duration_of_gc * ((assumed_throughput_drop_during_gc / acceptable_throughput_drop) - 1.0);
- const double time_until_gc = acceptable_gc_interval - time_since_last_gc;
- log_debug(gc, director)("Rule: Proactive, AcceptableGCInterval: %.3lfs, TimeSinceLastGC: %.3lfs, TimeUntilGC: %.3lfs",
- acceptable_gc_interval, time_since_last_gc, time_until_gc);
- return time_until_gc <= ;
- }
最后,当所有策略都不满足时,返回_no_gc,表示不进行gc
二、回收过程
gc整个周期:
彩色指针示意图:
- (STW)Pause Mark Start,开始标记,这个阶段只会标记(Mark0)由root引用的object,组成Root Set
- Concurrent Mark,并发标记,从Root Set出发,并发遍历Root Set object的引用链并标记(Mark1)
- (STW)Pause Mark End,检查是否已经并发标记完成,如果不是,需要进行多一次Concurrent Mark
- Concurrent Process Non-Strong References,并发处理弱引用
- Concurrent Reset Relocation Set
- Concurrent Destroy Detached Pages
- Concurrent Select Relocation Set,并发选择Relocation Set;
- Concurrent Prepare Relocation Set,并发预处理Relocation Set
- (STW)Pause Relocate Start,开始转移对象,依然是遍历root引用
- Concurrent Relocate,并发转移,将需要回收的Page里的对象转移到Relocation Set,然后回收Page给系统重新利用
run_gc_cycle函数(/src/hotspot/share/gc/z/zDriver.cpp):
- void ZDriver::run_gc_cycle(GCCause::Cause cause) {
- ZDriverCycleScope scope(cause);
- // Phase 1: Pause Mark Start
- {
- ZMarkStartClosure cl;
- vm_operation(&cl);
- }
- // Phase 2: Concurrent Mark
- {
- ZStatTimer timer(ZPhaseConcurrentMark);
- ZHeap::heap()->mark();
- }
- // Phase 3: Pause Mark End
- {
- ZMarkEndClosure cl;
- while (!vm_operation(&cl)) {
- // Phase 3.5: Concurrent Mark Continue
- ZStatTimer timer(ZPhaseConcurrentMarkContinue);
- ZHeap::heap()->mark();
- }
- }
- // Phase 4: Concurrent Process Non-Strong References
- {
- ZStatTimer timer(ZPhaseConcurrentProcessNonStrongReferences);
- ZHeap::heap()->process_non_strong_references();
- }
- // Phase 5: Concurrent Reset Relocation Set
- {
- ZStatTimer timer(ZPhaseConcurrentResetRelocationSet);
- ZHeap::heap()->reset_relocation_set();
- }
- // Phase 6: Concurrent Destroy Detached Pages
- {
- ZStatTimer timer(ZPhaseConcurrentDestroyDetachedPages);
- ZHeap::heap()->destroy_detached_pages();
- }
- // Phase 7: Concurrent Select Relocation Set
- {
- ZStatTimer timer(ZPhaseConcurrentSelectRelocationSet);
- ZHeap::heap()->select_relocation_set();
- }
- // Phase 8: Concurrent Prepare Relocation Set
- {
- ZStatTimer timer(ZPhaseConcurrentPrepareRelocationSet);
- ZHeap::heap()->prepare_relocation_set();
- }
- // Phase 9: Pause Relocate Start
- {
- ZRelocateStartClosure cl;
- vm_operation(&cl);
- }
- // Phase 10: Concurrent Relocate
- {
- ZStatTimer timer(ZPhaseConcurrentRelocated);
- ZHeap::heap()->relocate();
- }
- }
未完待续
ZGC gc策略及回收过程-源码分析的更多相关文章
- (3.10)mysql基础深入——mysqld 服务器与客户端连接过程 源码分析【待写】
(3.10)mysql基础深入——mysqld 服务器与客户端连接过程 源码分析[待写]
- Netty源码分析 (七)----- read过程 源码分析
在上一篇文章中,我们分析了processSelectedKey这个方法中的accept过程,本文将分析一下work线程中的read过程. private static void processSele ...
- 设计模式(二十三)——策略模式(Arrays源码分析)
1 编写鸭子项目,具体要求如下: 1) 有各种鸭子(比如 野鸭.北京鸭.水鸭等, 鸭子有各种行为,比如 叫.飞行等) 2) 显示鸭子的信息 2 传统方案解决鸭子问题的分析和代码实现 1) 传统的设计方 ...
- YARN(MapReduce 2)运行MapReduce的过程-源码分析
这是我的分析,当然查阅书籍和网络.如有什么不对的,请各位批评指正.以下的类有的并不完全,只列出重要的方法. 如要转载,请注上作者以及出处. 一.源码阅读环境 需要安装jdk1.7.0版本及其以上版本, ...
- Flink中TaskManager端执行用户逻辑过程(源码分析)
TaskManager接收到来自JobManager的jobGraph转换得到的TDD对象,启动了任务,在StreamInputProcessor类的processInput()方法中 通过一个whi ...
- Netty源码分析 (八)----- write过程 源码分析
上一篇文章主要讲了netty的read过程,本文主要分析一下write和writeAndFlush. 主要内容 本文分以下几个部分阐述一个java对象最后是如何转变成字节流,写到socket缓冲区中去 ...
- HDFS dfsclient写文件过程 源码分析
HDFS写入文件的重要概念 HDFS一个文件由多个block构成.HDFS在进行block读写的时候是以packet(默认每个packet为64K)为单位进行的.每一个packet由若干个chunk( ...
- spring启动component-scan类扫描加载过程---源码分析
http://blog.csdn.net/xieyuooo/article/details/9089441#comments
- elasticsearch 5.5 query 过程 源码分析
(1)请求 transfer to 任意node 节点 标记为coordinate node server入口函数 transportSearchAction doExecute方法 coordin ...
随机推荐
- NameNode数据存储
HDFS架构图 HDFS原理 1) 三大组件 NameNode. DataNode .SecondaryNameNode 2)NameNode 存储元数据(文件名.创建时间.大小.权限.文件与blo ...
- Storm 系列(四)—— Storm 集群环境搭建
一.集群规划 这里搭建一个 3 节点的 Storm 集群:三台主机上均部署 Supervisor 和 LogViewer 服务.同时为了保证高可用,除了在 hadoop001 上部署主 Nimbus ...
- 持续集成高级篇之Jenkins Pipeline 集成sonarqube
系列目录 前面章节中我们讲到了Sonarqube的使用,其实Sonarqube获取msbuild结果主要是执行三个命令,开始标记,执行msbuild,结束标记,这些都是命令,是非常容易集成到我们ci流 ...
- 基于servlet的图书管理系统
该项目是Java语言开发的图书管理系统,IDE采用eclipse,技术采用servlet,数据库使用mysql,前端页面采用bootstrap框架,简介美观. 系统具备基础的功能,读者可以注册登录,登 ...
- mysql:外键
mysql:外键 转自:https://www.cnblogs.com/brucemengbm/p/6897410.html 一个班级的学生个人信息表: 什么是外键 在设计的时候,就给表1加入一个外键 ...
- python-re正则表达--持续更新
| 模式 | 描述| |---- |----| | \w | 匹配字母数字及下划线 | | \W | 匹配非字母数 ...
- UGUI_关卡选项界面
1.Image组件—“Source Image”,Set Native Size. 2.Image组件—“Image Type”——Sliced 编辑要放大缩小的图片,Sprite Editor,采用 ...
- MyBatis 3.5.2 新特性介绍
1.MyBatis 最新版本 3.5.2 发布 MyBatis最新版本是:3.5.2,发布时间是:2019年7月15日 2.MyBatis 3.5.2 新特征介绍 我们知道,MyBatis 是支持定制 ...
- Linux入门基础之 下
八.Linux 管道.重定向及文本处理 8.1.Linux 多命令协作:管道及重定向 8.1.1 开源文化 开源文化的核心理念之一就是不要重复发明轮子,很多的开源软件都是现有软件.代码.功能的重新组合 ...
- 第八届蓝桥杯java b组第三题
标题:承压计算 X星球的高科技实验室中整齐地堆放着某批珍贵金属原料. 每块金属原料的外形.尺寸完全一致,但重量不同.金属材料被严格地堆放成金字塔形. 7 ...