Problem Portal

Portal1:Luogu

Description

如题,给出一个网络图,以及其源点和汇点,求出其网络最大流。

Input

第一行包含四个正整数\(N,M,S,T\),分别表示点的个数,有向边的个数,源点序号,汇点序号。

接下来\(M\)行每行包含三个正整数\(u_i,v_i,w_i\),表示第\(i\)条有向边从\(w_i\)出发,到达\(v_i\),边权为\(w_i\)(即该边最大流量为\(w_i\))。

Output

一行,包含一个正整数,即为该网络的最大流。

Sample Input

4 5 4 3
4 2 30
4 3 20
2 3 20
2 1 30
1 3 40

Sample Output

50

Hint

数据规模:

对于\(30\%\)的数据:\(N \leq 10,M \leq 25\);

对于\(70\%\)的数据:\(N \leq 200,M \leq 1000\);

对于\(100\%\)的数据:\(N \leq 10000,M \leq 100000\)。

样例说明:

题目中存在\(3\)条路径:

\(4 \to 2 \to 3\),该路线可通过\(20\)的流量

\(4 \to 3\),可通过\(20\)的流量

\(4 \to 2 \to 1 \to 3\),可通过\(10\)的流量(边\(4 \to 2\)之前已经耗费了\(20\)的流量)

故流量总计\(20+20+10=50\),输出\(50\)。

Solution

模板题,求最大流。

Code

Emonds Karp(EK)算法
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<queue> using namespace std; const int INF=0x3f3f3f3f, MAXN=10005, MAXM=200005;
int n, m, s, t, u, v, val, cnt, head[MAXN], dis[MAXN], pre[MAXN];
queue<int> Q;
struct node {
int u, v, val, flow, nxt;
} edge[MAXM];
inline void addedge(int u, int v, int w) {//前向星存图
edge[++cnt].u=u; edge[cnt].v=v; edge[cnt].val=w; edge[cnt].nxt=head[u]; head[u]=cnt;
}
inline bool Emonds_Karp() {
memset(pre, 0, sizeof(pre));
memset(dis, 0, sizeof(dis));//初始化
dis[s]=INF;
pre[s]=0;
Q.push(s);
while(!Q.empty()) {//类似于SPFA
int x=Q.front();
Q.pop();
for (int i=head[x]; i; i=edge[i].nxt) {
int v=edge[i].v;
if (!dis[v] && edge[i].val>edge[i].flow) {
Q.push(v);
dis[v]=min(dis[x], edge[i].val-edge[i].flow);
pre[v]=i;
}
if (dis[t]) break;
}
}
return dis[t];
}
int main() {
scanf("%d%d%d%d",&n, &m, &s, &t);
cnt=1;
for(int i=1; i<=m; i++) {
scanf("%d%d%d",&u, &v, &val);
addedge(u, v, val);
addedge(v, u, 0);//前向星存图
}
int ans=0;
while (Emonds_Karp()) {//Emonds Karp算法
for (int i=t; i!=s; i=edge[pre[i]].u) {
edge[pre[i]].flow+=dis[t];
edge[pre[i] xor 1].val-=dis[t];
}
ans+=dis[t];
}
printf("%d\n",ans);
return 0;
}
Dinic算法
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<queue> using namespace std; const int INF=0x3f3f3f3f, MAXN=10005, MAXM=200005;
struct node {
int nxt, to, val;
} edge[MAXM];
queue<int> Q;
int n, m, s, t, u, v, cnt, val, dis[MAXN], head[MAXN];
inline void addedge(int u, int v, int w) {//前向星存图
edge[++cnt].val=w; edge[cnt].to=v; edge[cnt].nxt=head[u]; head[u]=cnt;
}
inline bool bfs() {
memset(dis, -1, sizeof(dis));
dis[s]=0;
Q.push(s);
while (!Q.empty()) {
int x=Q.front();
Q.pop();
for (int i=head[x]; ~i; i=edge[i].nxt) {
int v=edge[i].to;
if (edge[i].val && dis[v]==-1) {
dis[v]=dis[x]+1;
Q.push(v);
}
}
}
if (~dis[t]) return 1;
return 0;
}
inline int dfs(int u, int flow) {
if (u==t) return flow;
int ret=flow;
for (int i=head[u]; ~i; i=edge[i].nxt) {
if (ret<=0) break;
int v=edge[i].to;
if (edge[i].val && dis[v]==dis[u]+1) {
int x=dfs(v, min(edge[i].val, ret));
ret-=x;
edge[i].val-=x;
edge[i xor 1].val+=x;
}
}
return flow-ret;
}
inline int Dinic() {//Dinic算法
int ret=0;
while (bfs()) ret+=dfs(s, INF);
return ret;
}
int main() {
scanf("%d%d%d%d",&n, &m, &s, &t);
memset(head, -1, sizeof(head));
cnt=1;
for (int i=1; i<=m; i++) {
scanf("%d%d%d",&u, &v, &val);
addedge(u, v, val);
addedge(v, u, 0);//双边
}
printf("%d\n",Dinic());
return 0;
}
Improved Shortest Augmenting Path(ISAP)算法
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<queue> using namespace std; const int INF=0x3f3f3f3f, MAXN=10005, MAXM=200005;
queue<int> Q;
int n, m, s, t, u, v, val, cnt, ans, head[MAXN], head1[MAXN], deep[MAXN], pre[MAXN], a[MAXN];
struct node {
int v, w, nxt;
} edge[MAXM];
inline void addedge(int u, int v, int w) {//前向星存图
edge[cnt].v=v; edge[cnt].w=w; edge[cnt].nxt=head[u]; head[u]=cnt++;
}
inline void bfs(int t) {
for (int i=1; i<=n; i++)
head1[i]=head[i];
for (int i=1; i<=n; i++)
deep[i]=n;
deep[t]=0;
Q.push(t);
while (!Q.empty()) {
int u=Q.front();
Q.pop();
for (int i=head[u]; ~i; i=edge[i].nxt)
if (deep[edge[i].v]==n && edge[i^1].w) {
deep[edge[i].v]=deep[u]+1;
Q.push(edge[i].v);
}
}
}
int calc(int s,int t) {//计算
int ans=INF, u=t;
while (u!=s) {
ans=min (ans,edge[pre[u]].w);
u=edge[pre[u] xor 1].v;
}
u=t;
while (u!=s) {
edge[pre[u]].w-=ans;
edge[pre[u] xor 1].w+=ans;
u=edge[pre[u] xor 1].v;
}
return ans;
}
inline void ISAP(int s, int t) {//ISAP算法
int u=s;
bfs(t);
for (int i=1; i<=n; i++)
a[deep[i]]++;
while (deep[s]<n) {
if (u==t) {
ans+=calc(s, t);
u=s;
}
bool flag=0;
for (int &i=head1[u]; ~i; i=edge[i].nxt)
if (deep[u]==deep[edge[i].v]+1 && edge[i].w) {
flag=1;
u=edge[i].v;
pre[edge[i].v]=i;
break;
}
if (!flag) {
int Min=n-1;
for (int i=head[u]; ~i; i=edge[i].nxt)
if (edge[i].w) Min=min(Min, deep[edge[i].v]);
if ((--a[deep[u]])==0) break;
a[deep[u]=Min+1]++;
head1[u]=head[u];
if (u!=s) u=edge[pre[u] xor 1].v;
}
}
}
int main() {
memset(head, -1, sizeof (head));
scanf("%d%d%d%d",&n, &m, &s, &t);
for (int i=1; i<=m; i++) {
scanf("%d%d%d",&u, &v, &val);
addedge(u, v, val);
addedge(v, u, 0);//双边
}
ISAP(s, t);
printf ("%d\n",ans);
return 0;
}

『题解』洛谷P3376 【模板】网络最大流的更多相关文章

  1. 『题解』洛谷P1063 能量项链

    原文地址 Problem Portal Portal1:Luogu Portal2:LibreOJ Portal3:Vijos Description 在\(Mars\)星球上,每个\(Mars\)人 ...

  2. 『题解』洛谷P3384 【模板】树链剖分

    Problem Portal Portal1: Luogu Description 如题,已知一棵包含\(N\)个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作: 操作\(1\): ...

  3. 『题解』洛谷P1993 小K的农场

    更好的阅读体验 Portal Portal1: Luogu Description 小\(K\)在\(\mathrm MC\)里面建立很多很多的农场,总共\(n\)个,以至于他自己都忘记了每个农场中种 ...

  4. 『题解』洛谷P2296 寻找道路

    更好的阅读体验 Portal Portal1: Luogu Portal2: LibreOJ Description 在有向图\(\mathrm G\)中,每条边的长度均为\(1\),现给定起点和终点 ...

  5. 『题解』洛谷P1351 联合权值

    更好的阅读体验 Portal Portal1: Luogu Portal2: LibreOJ Description 无向连通图\(\mathrm G\)有\(n\)个点,\(n - 1\)条边.点从 ...

  6. 『题解』洛谷P2170 选学霸

    更好的阅读体验 Portal Portal1: Luogu Description 老师想从\(N\)名学生中选\(M\)人当学霸,但有\(K\)对人实力相当,如果实力相当的人中,一部分被选上,另一部 ...

  7. 『题解』洛谷P1083 借教室

    更好的阅读体验 Portal Portal1: Luogu Portal2: LibreOJ Portal3: Vijos Description 在大学期间,经常需要租借教室.大到院系举办活动,小到 ...

  8. 『题解』洛谷P1314 聪明的质监员

    更好的阅读体验 Portal Portal1: Luogu Portal2: LibreOJ Portal3: Vijos Description 小T是一名质量监督员,最近负责检验一批矿产的质量.这 ...

  9. 『题解』洛谷P2357 守墓人

    Portal Portal1: Luogu Description 在一个荒凉的墓地上有一个令人尊敬的守墓人,他看守的墓地从来没有被盗过, 所以人们很放心的把自己的先人的墓安顿在他那守墓人能看好这片墓 ...

随机推荐

  1. 做高逼格程序员之说走就走的「Linux To Go 」

    简介:想拥有一个Linux,在自己的电脑上安装双系统太麻烦.想和WTG一样,随插随用. 使用LTG的好处 安装.修复系统:配置好后的Linux系统极其强大. 工作中我们同样可以使用这个系统,回到家里插 ...

  2. MyBatis详解 一篇就够啦

    第1章MyBatis框架配置文件详解 1.1 typeHandlers类型转换器 每当MyBatis 设置参数到PreparedStatement 或者从ResultSet 结果集中取得值时,就会使用 ...

  3. 02-22 决策树C4.5算法

    目录 决策树C4.5算法 一.决策树C4.5算法学习目标 二.决策树C4.5算法详解 2.1 连续特征值离散化 2.2 信息增益比 2.3 剪枝 2.4 特征值加权 三.决策树C4.5算法流程 3.1 ...

  4. NOIP2014联合权值

    无向连通图G有n个点,n-1条边.点从1到n依次编号,编号为i的点的权值为Wi  ,每条边的长度均为1.图上两点(u, v)的距离定义为u点到v点的最短距离.对于图G上的点对(u, v),若它们的距离 ...

  5. StringBuffer的一些小整理

    大家好,欢迎大家在百忙当中来到我的博客文,也许是因为各种需要到此一游,哈哈.不过来到这里不会让您失望的,此段博文是这段时间不忙的时候整理出来的,对于刚学java基础的同学非常适合.下面言归正传: 首先 ...

  6. 简单了解工作空间工厂(IWorkspaceFactory)

    工作空间工厂(WorkspaceFactory)是工作空间的发布者,允许客户连接通过一组连接属性定义的工作空间. 工作空间表达了一个包含一个或多个数据集的数据库或数据源,数据集可以是表.特征类.关系类 ...

  7. Java自动化测试框架-03 - TestNG之Test Group篇 - 我们一起组团打怪升级(详细教程)

    简介 其实这篇文章的group宏哥在上一篇中就提到过,但是就是举例一笔带过的,因此今天专门有一篇文章来讲解Group的相关知识.希望大家茅塞顿开 ,有着更进一步认识和了解测试组. 一.Test Gro ...

  8. plSql使用流程

    1. 下载PLSQL developer.instantclient_11_2, 下载地址:https://pan.baidu.com/s/1_MjmIT4nUzsQ7Hi8MCrs1A, 备注:此安 ...

  9. wwindows权限认识(用户及用户组)

    windows权限认识(用户及用户组) Windows系统内置了许多本地用户组,这些用户组本身都已经被赋予一些权限(permissions),它们具有管理本地计算机或访问本地资源的权限.只要用户账户加 ...

  10. PHP yield代替range生成范围内的数

    <?php function yieldRange($start, $limit, $step) { if ($start == $limit || $step == 0) { return $ ...