数据挖掘作业,要实现决策树,现记录学习过程

win10系统,Python 3.7.0

构建一个决策树,在鸢尾花数据集上训练一个DecisionTreeClassifier:

from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier
iris = load_iris()
X = iris.data[:,2:]
y = iris.target
tree_clf = DecisionTreeClassifier(max_depth=2)
tree_clf.fit(X,y)

要将决策树可视化,首先,使用export_graphviz()方法输出一个图形定义文件,命名为iris_tree.dot

这里需要安装graphviz

安装方式:

① conda install python-graphviz

② pip install graphviz

在当前目录下新建images/decision_trees目录

不然会报错

Traceback (most recent call last):
File "decisiontree.py", line 21, in <module>
filled=True)
File "E:\Anaconda\lib\site-packages\sklearn\tree\export.py", line 762, in export_graphviz
out_file = open(out_file, "w", encoding="utf-8")
FileNotFoundError: [Errno 2] No such file or directory: '.\\images\\decision_trees\\iris_tree.dot'

from sklearn.tree import export_graphviz
import os
PROJECT_ROOT_DIR = "."
CHAPTER_ID = "decision_trees"
def image_path(fig_id):
return os.path.join(PROJECT_ROOT_DIR, "images", CHAPTER_ID, fig_id)

export_graphviz(tree_clf,
out_file=image_path("iris_tree.dot"),
feature_names=iris.feature_names[2:],
class_names=iris.target_names,
rounded=True,
filled=True)

运行过后生成了一个dot文件

使用命令dot -Tpng iris_tree.dot -o iris_tree.png 将dot文件转换为png文件方便显示

决策树如上图所示

petal length:花瓣长度   petal width:花瓣宽度

samples:统计出它应用于多少个训练样本实例

value:这个节点对于每一个类别的样例有多少个  这个叶结点显示包含0 个 Iris-Setosa,1 个 Iris-Versicolor 和 45 个 Iris-Virginica

Gini:用于测量它的纯度,如果一个节点包含的所有训练样例全都是同一类别的,我们就说这个节点是纯的( Gini=0 )

Gini公式:

 Pik是第i个节点上,类别为k的训练实例占比

深度为 2 的左侧节点基尼指数为: 1 - (0/54)² - (49/54)² - (5/54)² = 0.68

进行预测

当找到了一朵鸢尾花并且想对它进行分类时,从根节点开始,询问花朵的花瓣长度是否小于2.45厘米。如果是,将向下移动到根的左侧子节点,在这种情况下,它是一片叶子节点,它不会再继续问任何问题,决策树预测你的花是iris-setosa

假设你找到了另一朵花,但这次的花瓣长度是大于2.45厘米的。必须向下移动到根的右侧子节点,而这个节点不是叶节点,它会问另一个问题,花瓣宽度是否小于1.75厘米?如果是,则将这朵花分类成iris-versicolor ,不是,则分类成iris-versicolor

注意:scikit-learn使用的是CART算法,该算法仅生成二叉树;非叶节点永远只有两个子节点。

估计分类概率

新样本:花瓣长5厘米,花瓣宽1.5厘米,预测具体的类

print(tree_clf.predict_proba([[5,1.5]]))
print(tree_clf.predict([[5,1.5]]))

此处说明分类为iris-setosa的概率为0,分类为iris-versicolor的概率为0.90740741,分类为iris-virginica的概率为0.09259259

通过predict预测该花为iris-versicolor

完整代码

#在鸢尾花数据集上进行一个决策树分类器的训练
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import export_graphviz
import os
PROJECT_ROOT_DIR = "."
CHAPTER_ID = "decision_trees"
def image_path(fig_id):
return os.path.join(PROJECT_ROOT_DIR, "images", CHAPTER_ID, fig_id) iris = load_iris()
X = iris.data[:,2:]
y = iris.target
tree_clf = DecisionTreeClassifier(max_depth=2)
tree_clf.fit(X,y)
export_graphviz(tree_clf,
out_file=image_path("iris_tree.dot"),
feature_names=iris.feature_names[2:],
class_names=iris.target_names,
rounded=True,
filled=True)
print(tree_clf.predict_proba([[5,1.5]]))
#[0]:iris-setosa, [1]:iris-versicolor, [2]:iris-virginica"
print(tree_clf.predict([[5,1.5]]))

CART训练算法原理介绍:

Scikit-Learn使用的是分类与回归树(Classification And Regression Tree,简称CART)算法来训练决策树(也叫作“生长”树)。想法非常简单:首先,使用单个特征k和阈值tk(例如,花瓣长度≤2.45厘米)将训练集分成两个子集。k和阈值tk怎么选择?答案是产生出最纯子集(受其大小加权)的k和tk就是经算法搜索确定的(t,tk)。

机器学习实战:基于Scikit-Learn和TensorFlow 读书笔记 第6章 决策树的更多相关文章

  1. Java多线程编程实战指南(核心篇)读书笔记(二)

    (尊重劳动成果,转载请注明出处:http://blog.csdn.net/qq_25827845/article/details/76651408冷血之心的博客) 博主准备恶补一番Java高并发编程相 ...

  2. Java多线程编程实战指南(核心篇)读书笔记(五)

    (尊重劳动成果,转载请注明出处:http://blog.csdn.net/qq_25827845/article/details/76730459冷血之心的博客) 博主准备恶补一番Java高并发编程相 ...

  3. Java多线程编程实战指南(核心篇)读书笔记(四)

    (尊重劳动成果,转载请注明出处:http://blog.csdn.net/qq_25827845/article/details/76690961冷血之心的博客) 博主准备恶补一番Java高并发编程相 ...

  4. Java多线程编程实战指南(核心篇)读书笔记(三)

    (尊重劳动成果,转载请注明出处:http://blog.csdn.net/qq_25827845/article/details/76686044冷血之心的博客) 博主准备恶补一番Java高并发编程相 ...

  5. Java多线程编程实战指南(核心篇)读书笔记(一)

    (尊重劳动成果,转载请注明出处:http://blog.csdn.net/qq_25827845/article/details/76422930冷血之心的博客) 博主准备恶补一番Java高并发编程相 ...

  6. 《黑客攻防技术宝典Web实战篇@第2版》读书笔记1:了解Web应用程序

    读书笔记第一部分对应原书的第一章,主要介绍了Web应用程序的发展,功能,安全状况. Web应用程序的发展历程 早期的万维网仅由Web站点构成,只是包含静态文档的信息库,随后人们发明了Web浏览器用来检 ...

  7. 《Linux内核设计与实现》第八周读书笔记——第四章 进程调度

    <Linux内核设计与实现>第八周读书笔记——第四章 进程调度 第4章 进程调度35 调度程序负责决定将哪个进程投入运行,何时运行以及运行多长时间,进程调度程序可看做在可运行态进程之间分配 ...

  8. 《Linux内核设计与实现》 第八周读书笔记 第四章 进程调度

    20135307 张嘉琪 第八周读书笔记 第四章 进程调度 调度程序负责决定将哪个进程投入运行,何时运行以及运行多长时间,进程调度程序可看做在可运行态进程之间分配有限的处理器时间资源的内核子系统.只有 ...

  9. 《Linux内核分析》读书笔记(四章)

    <Linux内核分析>读书笔记(四章) 标签(空格分隔): 20135328陈都 第四章 进程调度 调度程序负责决定将哪个进程投入运行,何时运行以及运行多长时间,进程调度程序可看做在可运行 ...

随机推荐

  1. php获取本机ip

    最近在写个东西时,需要获取本机的IP,但是由于php本身不带这样的功能,在网上找了好久也没有一个好办法,突然想到一个好办法,如下代码 <?=gethostbyname($_ENV['COMPUT ...

  2. mysql workbench 报错:Can't analyze file, please try to change encoding type...

    Mysql workbench 导入csv can't analyze file 原因: workbench 识别csv第一行作为column名,column名不能为中文,所以报错.解决方法:csv第 ...

  3. HTML51-清除浮动overflow、网易注册界面基本结构搭建

    一.overflow:hidden;作用 (1)可以将超出标签范围的内容裁剪掉 (2)清除浮动 .box1{ background-color: red; /*border:1px white sol ...

  4. 一文带你深入浅出Spring 事务原理

    Spring事务的基本原理 Spring事务的本质其实就是数据库对事务的支持,没有数据库的事务支持,spring是无法提供事务功能的.对于纯JDBC操作数据库,想要用到事务,可以按照以下步骤进行: 获 ...

  5. 2019年腾讯最新Java工程师面试题

    一.单选题(共21题,每题5分) 1在正则表达式当中下面那一个字符集表示非空格字符   A.[:graph:] B.[:digit:] C.[:space:] D.[:alpha:] 参考答案:A 答 ...

  6. Winform中封装DevExpress的MarqueeProgressBarComtrol实现弹窗式进度条效果

    场景 在Winform中实现弹窗式进度条 就是新建一个窗体,然后在窗体中加入进度条控件,然后在触发进度条的事件中将加载进度报告给 进度条控件. 注: 博客主页: https://blog.csdn.n ...

  7. PEMDAS 操作順序

    關於計算子 Operator 的操作順序,在"像計算機科學家一樣思考Python"這書 [1] 寫的明白扼要.它以 PEMDAS 這幾個簡單的英文字開頭表明: P (Parenth ...

  8. 利用keras进行手写数字识别模型训练,并输出训练准确度

    from keras.datasets import mnist (train_images, train_labels), (test_images, test_labels) = mnist.lo ...

  9. 此 iCloud 帐户已经存在。

    0x00 事件 将 Apple ID 换了一个邮箱,然后在 macOS 重新登陆的时候出现登录不上异常,始终显示 若要将此 Apple ID 用作主要的 iCloud 帐户,请从"互联网帐户 ...

  10. RAC_多路径配置

    多路径配置 http://blog.itpub.net/31397003/viewspace-2143390/ 挂盘/配置好yum源 2.程序包的安装 device-mapper-1.02.95-2. ...