前沿

  在文章NLP(十七)利用tensorflow-serving部署kashgari模型中,笔者介绍了如何利用tensorflow-serving部署来部署深度模型模型,在那篇文章中,笔者利用kashgari模块实现了经典的BERT+Bi-LSTM+CRF模型结构,在标注了时间的文本语料(大约2000多个训练句子)中也达到了很好的识别效果,但是也存在着不足之处,那就是模型的预测时间过长,平均预测一个句子中的时间耗时约400毫秒,这种预测速度在生产环境或实际应用中是不能忍受的。

  查看该模型的耗时原因,很大一部分原因在于BERT的调用。BERT是当下最火,知名度最高的预训练模型,虽然会使得模型的训练、预测耗时增加,但也是小样本语料下的最佳模型工具之一,因此,BERT在模型的架构上是不可缺少的。那么,该如何避免使用预训练模型带来的模型预测耗时过长的问题呢?

  本文决定尝试使用ALBERT,来验证ALBERT在提升模型预测速度方面的应用,同时,也算是本人对于使用ALBERT的一次实战吧~

ALBERT简介

  我们不妨花一些时间来简单地了解一下ALBERT。ALBERT是最近一周才开源的预训练模型,其Github的网址为:https://github.com/brightmart/albert_zh ,其论文可以参考网址:https://arxiv.org/pdf/1909.11942.pdf

  根据ALBERT的Github介绍,ALBERT在海量中文语料上进行了预训练,模型的参数更少,效果更好。以albert_tiny_zh为例,其文件大小16M、参数为1.8M,模型大小仅为BERT的1/25,效果仅比BERT略差或者在某些NLP任务上更好。在本文的预训练模型中,将采用albert_tiny_zh。

利用ALBERT训练时间识别模型

  我们以Github中的bertNER为本次项目的代码模板,在该项目中,实现的模型为BERT+Bi-LSTM+CRF,我们将BERT替换为ALBERT,也就是说笔者的项目中模型为ALBERT+Bi-LSTM+CRF,同时替换bert文件夹的代码为alert_zh,替换预训练模型文件夹chinese_L-12_H-768_A-12(BERT中文预训练模型文件)为albert_tiny。当然,也需要修改一部分的项目源代码,来适应ALBERT的模型训练。

  数据集采用笔者自己标注的时间语料,即标注了时间的句子,大概2000+句子,其中75%作为训练集(time.train文件),10%作为验证集(time.dev文件),15%作为测试集(time.test文件)。在这里笔者不打算给出具体的Python代码,因为工程比较复杂,有兴趣的额读者可以去查看该项目的Github地址:。

  一些模型的参数可以如下:

  • 预训练模型:ALBERT(tiny)
  • 训练样本的最大字符长度: 128
  • batch_size: 8
  • epoch: 100
  • 双向LSTM的个数:100

  ALBERT的模型训练时间也会显著提高,我们耐心地等待模型训练完毕。在time.dev和time.test数据集上的表现如下表:

数据集 precision recall f1
time.dev 81.41% 84.95% 83.14%
time.test 83.03% 86.38% 84.67%

  接着笔者利用训练好的模型,用tornado封装了一个模型预测的HTTP服务,具体的代码如下:

# -*- coding: utf-8 -*-

import os
import json
import time
import pickle
import traceback import tornado.httpserver
import tornado.ioloop
import tornado.options
import tornado.web
from tornado.options import define, options import tensorflow as tf
from utils import create_model, get_logger
from model import Model
from loader import input_from_line
from train import FLAGS, load_config, train # 定义端口为12306
define("port", default=12306, help="run on the given port", type=int)
# 导入模型
config = load_config(FLAGS.config_file)
logger = get_logger(FLAGS.log_file)
# limit GPU memory
tf_config = tf.ConfigProto()
tf_config.gpu_options.allow_growth = False
with open(FLAGS.map_file, "rb") as f:
tag_to_id, id_to_tag = pickle.load(f) sess = tf.Session(config=tf_config)
model = create_model(sess, Model, FLAGS.ckpt_path, config, logger) # 模型预测的HTTP接口
class ResultHandler(tornado.web.RequestHandler):
# post函数
def post(self):
event = self.get_argument('event')
result = model.evaluate_line(sess, input_from_line(event, FLAGS.max_seq_len, tag_to_id), id_to_tag)
self.write(json.dumps(result, ensure_ascii=False)) # 主函数
def main():
# 开启tornado服务
tornado.options.parse_command_line()
# 定义app
app = tornado.web.Application(
handlers=[
(r'/subj_extract', ResultHandler)
], #网页路径控制
)
http_server = tornado.httpserver.HTTPServer(app)
http_server.listen(options.port)
tornado.ioloop.IOLoop.instance().start() main()

模型预测提速了吗?

  将模型预测封装成HTTP服务后,我们利用Postman来测试模型预测的效果和时间,如下图所示:

可以看到,模型预测的结果正确,且耗时仅为38ms。

  接着我们尝试多测试几个句子的测试,测试代码如下:

# Daxing, Beijing
import requests
import json
import time url = 'http://localhost:12306/subj_extract' texts = ['据《新闻联播》报道,9月9日至11日,中央纪委书记赵乐际到河北调研。',
'记者从国家发展改革委、商务部相关方面获悉,日前美方已决定对拟于10月1日实施的中国输美商品加征关税措施做出调整,中方支持相关企业从即日起按照市场化原则和WTO规则,自美采购一定数量大豆、猪肉等农产品,国务院关税税则委员会将对上述采购予以加征关税排除。',
'据印度Zee新闻网站12日报道,亚洲新闻国际通讯社援引印度军方消息人士的话说,9月11日的对峙事件发生在靠近班公错北岸的实际控制线一带。',
'儋州市决定,从9月开始,对城市低保、农村低保、特困供养人员、优抚对象、领取失业保险金人员、建档立卡未脱贫人口等低收入群体共3万多人,发放猪肉价格补贴,每人每月发放不低于100元补贴,以后发放标准,将根据猪肉价波动情况进行动态调整。',
'9月11日,华为心声社区发布美国经济学家托马斯.弗里德曼在《纽约时报》上的专栏内容,弗里德曼透露,在与华为创始人任正非最近一次采访中,任正非表示华为愿意与美国司法部展开话题不设限的讨论。',
'造血干细胞移植治疗白血病技术已日益成熟,然而,通过该方法同时治愈艾滋病目前还是一道全球尚在攻克的难题。',
'英国航空事故调查局(AAIB)近日披露,今年2月6日一趟由德国法兰克福飞往墨西哥坎昆的航班上,因飞行员打翻咖啡使操作面板冒烟,导致飞机折返迫降爱尔兰。',
'当地时间周四(9月12日),印度尼西亚财政部长英卓华(Sri Mulyani Indrawati)明确表示:特朗普的推特是风险之一。',
'华中科技大学9月12日通过其官方网站发布通报称,9月2日,我校一硕士研究生不幸坠楼身亡。',
'微博用户@ooooviki 9月12日下午公布发生在自己身上的惊悚遭遇:一个自称网警、名叫郑洋的人利用职务之便,查到她的完备的个人信息,包括但不限于身份证号、家庭地址、电话号码、户籍变动情况等,要求她做他女朋友。',
'今天,贵阳取消了汽车限购,成为目前全国实行限购政策的9个省市中,首个取消限购的城市。',
'据悉,与全球同步,中国区此次将于9月13日于iPhone官方渠道和京东正式开启预售,京东成Apple中国区唯一官方授权预售渠道。',
'根据央行公布的数据,截至2019年6月末,存款类金融机构住户部门短期消费贷款规模为9.11万亿元,2019年上半年该项净增3293.19亿元,上半年增量看起来并不乐观。',
'9月11日,一段拍摄浙江万里学院学生食堂的视频走红网络,视频显示该学校食堂不仅在用餐区域设置了可以看电影、比赛的大屏幕,还推出了“一人食”餐位。',
'当日,在北京举行的2019年国际篮联篮球世界杯半决赛中,西班牙队对阵澳大利亚队。',
] t1 = time.time()
for text in texts:
data = {'event': text.replace(' ', '')}
req = requests.post(url, data)
if req.status_code == 200:
print('原文:%s' % text)
res = json.loads(req.content)['entities']
print('抽取结果:%s' % str([_['word'] for _ in res])) t2 = time.time()
print('一共耗时:%ss.' % str(round(t2-t1, 4)))

输出结果如下:

原文:据《新闻联播》报道,9月9日至11日,中央纪委书记赵乐际到河北调研。
抽取结果:['9月9日至11日']
原文:记者从国家发展改革委、商务部相关方面获悉,日前美方已决定对拟于10月1日实施的中国输美商品加征关税措施做出调整,中方支持相关企业从即日起按照市场化原则和WTO规则,自美采购一定数量大豆、猪肉等农产品,国务院关税税则委员会将对上述采购予以加征关税排除。
抽取结果:['日前', '10月1日']
原文:据印度Zee新闻网站12日报道,亚洲新闻国际通讯社援引印度军方消息人士的话说,9月11日的对峙事件发生在靠近班公错北岸的实际控制线一带。
抽取结果:['12日', '9月11日']
原文:儋州市决定,从9月开始,对城市低保、农村低保、特困供养人员、优抚对象、领取失业保险金人员、建档立卡未脱贫人口等低收入群体共3万多人,发放猪肉价格补贴,每人每月发放不低于100元补贴,以后发放标准,将根据猪肉价波动情况进行动态调整。
抽取结果:['9月']
原文:9月11日,华为心声社区发布美国经济学家托马斯.弗里德曼在《纽约时报》上的专栏内容,弗里德曼透露,在与华为创始人任正非最近一次采访中,任正非表示华为愿意与美国司法部展开话题不设限的讨论。
抽取结果:['9月11日']
原文:造血干细胞移植治疗白血病技术已日益成熟,然而,通过该方法同时治愈艾滋病目前还是一道全球尚在攻克的难题。
抽取结果:[]
原文:英国航空事故调查局(AAIB)近日披露,今年2月6日一趟由德国法兰克福飞往墨西哥坎昆的航班上,因飞行员打翻咖啡使操作面板冒烟,导致飞机折返迫降爱尔兰。
抽取结果:['近日', '今年2月6日']
原文:当地时间周四(9月12日),印度尼西亚财政部长英卓华(Sri Mulyani Indrawati)明确表示:特朗普的推特是风险之一。
抽取结果:['当地时间周四(9月12日)']
原文:华中科技大学9月12日通过其官方网站发布通报称,9月2日,我校一硕士研究生不幸坠楼身亡。
抽取结果:['9月12日', '9月2日']
原文:微博用户@ooooviki 9月12日下午公布发生在自己身上的惊悚遭遇:一个自称网警、名叫郑洋的人利用职务之便,查到她的完备的个人信息,包括但不限于身份证号、家庭地址、电话号码、户籍变动情况等,要求她做他女朋友。
抽取结果:['9月12日下午']
原文:今天,贵阳取消了汽车限购,成为目前全国实行限购政策的9个省市中,首个取消限购的城市。
抽取结果:['今天', '目前']
原文:据悉,与全球同步,中国区此次将于9月13日于iPhone官方渠道和京东正式开启预售,京东成Apple中国区唯一官方授权预售渠道。
抽取结果:['9月13日']
原文:根据央行公布的数据,截至2019年6月末,存款类金融机构住户部门短期消费贷款规模为9.11万亿元,2019年上半年该项净增3293.19亿元,上半年增量看起来并不乐观。
抽取结果:['2019年6月末', '2019年上半年', '上半年']
原文:9月11日,一段拍摄浙江万里学院学生食堂的视频走红网络,视频显示该学校食堂不仅在用餐区域设置了可以看电影、比赛的大屏幕,还推出了“一人食”餐位。
抽取结果:['9月11日']
原文:当日,在北京举行的2019年国际篮联篮球世界杯半决赛中,西班牙队对阵澳大利亚队。
抽取结果:['当日', '2019年']
一共耗时:0.5314s.

可以看到,对于测试的15个句子,识别的准确率很高,且预测耗时为531ms,平均每个话的预测时间不超过40ms。相比较而言,文章NLP(十七)利用tensorflow-serving部署kashgari模型中的模型,该模型的预测时间为每句话1秒多,模型预测的速度为带ALBERT模型的25倍多。

  因此,ALBERT模型确实提升了模型预测的时间,而且效&果非常显著。

总结

  由于ALBERT开源不到一周,而且笔者的学识、才能有限,因此,在代码方面可能会存在不足。但是,作为一次使用ALBERT的历经,希望能够与大家分享。

  本文绝不是上述项目代码的抄袭和堆砌,该项目融入了笔者自己的思考,希望不要被误解为是抄袭。笔者使用上述的bertNER和ALBERT,只是为了验证ALBERT在模型预测耗时方面的提速效果,而事实是,ALBERT确实给我带来了很大惊喜,感受源代码作者们~

  最后,附上本文中笔者项目的Github地址:https://github.com/percent4/ALBERT_4_Time_Recognition

  众里寻他千百度。蓦然回首,那人却在,灯火阑珊处。

参考文献

  1. 超小型BERT中文版横空出世!模型只有16M,训练速度提升10倍:https://mp.weixin.qq.com/s/eVlNpejrxdE4ctDTBM-fiA
  2. ALBERT的Github地址:https://github.com/brightmart/albert_zh
  3. bertNER项目的Github地址:https://github.com/yumath/bertNER
  4. NLP(十七)利用tensorflow-serving部署kashgari模型: https://www.cnblogs.com/jclian91/p/11526547.html

NLP(十八)利用ALBERT提升模型预测速度的一次尝试的更多相关文章

  1. 菜鸟学SSH(十八)——Hibernate动态模型+JRebel实现动态创建表

    项目用的是SSH基础框架,当中有一些信息非常相似,但又不尽同样.假设每个建一个实体的话,那样实体会太多.假设分组抽象,然后继承,又不是特别有规律.鉴于这样的情况.就打算让用户自己配置要加入的字段,然后 ...

  2. NLP(二十二)利用ALBERT实现文本二分类

      在文章NLP(二十)利用BERT实现文本二分类中,笔者介绍了如何使用BERT来实现文本二分类功能,以判别是否属于出访类事件为例子.但是呢,利用BERT在做模型预测的时候存在预测时间较长的问题.因此 ...

  3. NLP(二十八)多标签文本分类

      本文将会讲述如何实现多标签文本分类. 什么是多标签分类?   在分类问题中,我们已经接触过二分类和多分类问题了.所谓二(多)分类问题,指的是y值一共有两(多)个类别,每个样本的y值只能属于其中的一 ...

  4. NLP(二十四)利用ALBERT实现命名实体识别

      本文将会介绍如何利用ALBERT来实现命名实体识别.如果有对命名实体识别不清楚的读者,请参考笔者的文章NLP入门(四)命名实体识别(NER) .   本文的项目结构如下:   其中,albert_ ...

  5. NLP(二十)利用BERT实现文本二分类

      在我们进行事件抽取的时候,我们需要触发词来确定是否属于某个特定的事件类型,比如我们以政治上的出访类事件为例,这类事件往往会出现"访问"这个词语,但是仅仅通过"访问&q ...

  6. R语言利用ROCR评测模型的预测能力

    R语言利用ROCR评测模型的预测能力 说明 受试者工作特征曲线(ROC),这是一种常用的二元分类系统性能展示图形,在曲线上分别标注了不同切点的真正率与假正率.我们通常会基于ROC曲线计算处于曲线下方的 ...

  7. NLP(十八) 一维卷积网络IMDB情感分析

    准备 Keras的IMDB数据集,包含一个词集和对应的情感标签 import pandas as pd from keras.preprocessing import sequence from ke ...

  8. NLP十大里程碑

    NLP十大里程碑 2.1 里程碑一:1985复杂特征集 复杂特征集(complex feature set)又叫做多重属性(multiple features)描写.语言学里,这种描写方法最早出现在语 ...

  9. NLP(二十六)限定领域的三元组抽取的一次尝试

      本文将会介绍笔者在2019语言与智能技术竞赛的三元组抽取比赛方面的一次尝试.由于该比赛早已结束,笔者当时也没有参加这个比赛,因此没有测评成绩,我们也只能拿到训练集和验证集.但是,这并不耽误我们在这 ...

随机推荐

  1. 正则表达式 第六篇:调用CLR函数执行正则查询

    在SQL Server数据库中可以执行模糊查询,像like子句,和全文查询(Fulltext search),但是无法直接执行正则查找,SQL Server没有执行正则表达式的内置函数,但是我们可以创 ...

  2. vue学习笔记(七)组件

    前言 在前面vue的一些博客中,我们几乎将vue的基础差不多学习完了,而从本篇博客开始将会进入到vue的另一个阶段性学习,本篇博客的内容在以后的vue项目中占很大的比重,所以小伙伴们需要认真学习,本篇 ...

  3. tensorflow多层CNN代码分析

    tf,reshape(tensor,shape,name=None) #其中shape为一个列表形式,特殊的一点是列表中可以存在-1.-1代表的含义是不用我们自己#指定这一维的大小,函数会自动计算,但 ...

  4. linux下的du和df的区别

    du(disk usage)是通过搜索文件来计算每个文件的大小然后累加,du能看到的文件只是一些当前存在的,没有被删除的.他计算的大小就是当前他认为存在的所有文件大小的累加和. df(disk fre ...

  5. appium自动化的一个实例

    实现appium的自动化,三步走,具体如下: 第一步:启动appium的服务端: 可以通过命令行的方式启动:cmd,然后输入appium,如下图 也可以打开桌面程序appium,点击右上角的运行按钮, ...

  6. JPA配置实体时 insertable = false, updatable = false

    当使用JPA配置实体时,如果有两个属性(一个是一般属性,一个是多对一的属性)映射到数据库的同一列,就会报错. 这时,在多对一的@JoinColumn注解中添加insertable = false, u ...

  7. 2019-2020-7 20199317《Linux内核原理与分析》第七周作业

    第6章  进程的描述和进程的创建 1  进程的描述       操作系统内核实现操作系统的三大管理功能,即进程管理.内存管理和文件系统.其中,操作系统内核中最核心的功能是进程管理.为了管理进程,内核要 ...

  8. Too many open files的四种解决办法【华为云技术分享】

    [摘要] Too many open files有四种可能:一 单个进程打开文件句柄数过多,二 操作系统打开的文件句柄数过多,三 systemd对该进程进行了限制,四 inotify达到上限. 领导见 ...

  9. jQuery中detach&&remove&&empty三种方法的区别

    jQuery中empty&&remove&&detach三种方法的区别 empty():移除指定元素内部的所有内容,但不包括它本身 remove():移除指定元素内部的 ...

  10. 创建raid10(五块磁盘)

    创建raid10(五块磁盘) Raid10(5块磁盘) 上一个bolg已经做了raid5(3 个raid. 2个备份),在此条件下继续以下步骤: 1.先将磁盘系统卸载  2.看系统挂载里是否还有md0 ...