Paper | Making a "Completely Blind" Image Quality Analyzer
质量评估大佬AC Bovik的作品,1200+引用。
目标问题:提出一些普适的、与主观质量接近的客观评估指标。普适意味着:无失真先验。
背景:现有的普适NR-IQA方法需要训练集(图像包含预期的失真,且需要人类评分数据)。这种方法泛化能力差,且要求高。
解决思路:从自然图像中获取一些统计数据(natural scene statistic, NSS),用来刻画图像质量。即不再需要人类评分数据用于训练。基于此的方法称为Natural Image Quality Evaluator (NIQE)。
效果:与SOTA的、基于训练的NR-IQA方法平起平坐。
意义:这种方法才是真正的blind。因为如果我们有合适的数据集,就说明我们对失真有了一定的预判,使得训练集和测试集的失真模式是一致的。虽然测试阶段是盲的,但训练显然非盲。
1. 技术细节
作者称之为no reference opinion-unaware distortion-unaware IQA model。一句话概括:将一系列quality-aware的特征,用一个多元高斯(multivariate Gaussian MVG)模型进行建模。那么,有损图像的质量就是其MVG 以及 自然图像的MVG 的距离。
1.1 NSS特征
第一步,图像归一化:减去局部均值,除以标准差+1:
这一步即计算了本文选择的NSS!根据参考文献[10]【这个文献很重要】,无损自然图像的式(1)遵循高斯分布。如果是非自然图像(如计算机渲染图像)或受损图像,那么分布就不像高斯分布。
注意:该指标在BRISQUE[3]中已经被用过。但BRISQUE方法没有NIQE好?
1.2 选择锐利块来计算NSS
第二步,我们选择块,来计算以上的NSS。注意,我们只考虑那些显著性高的区域,一般是锐利的区域[12]。前面我们计算了每个像素点邻域的标准差,因此我们可以据此估算该区域的锐利程度:
如图即选出的区域示例:
然后,我们简单设一个阈值,该阈值为整个图像峰值锐利度的75%。超过阈值即锐利块,被选出计算NSS。
1.3 一张图像得到36个特征
第三步,我们用零均值的广义高斯分布(generalized Gaussian distribution, GGD)来建模自然图像的NSS:
和[3]一样,本文通过相邻像素NSS的相乘,来检测该NSS指标的异常。
建模时,我们考虑4个方向、2种块的尺度。每一个GGD模型有4个参数,一共能产生36个特征。产生方法要看[3]。
1.4 用MVG建模这36个特征
第四步,我们用MVG建模自然图像的这36个特征。
1.5 NIQE指标
最后,我们计算目标MVG和自然MVG的距离,即NIQE得分:
2. 实验
我们只看一个实验:我们需要多少自然图像进行训练,模型才会收敛?
可见,当超过100张图像时,模型的稳定性就很好了。
Paper | Making a "Completely Blind" Image Quality Analyzer的更多相关文章
- Paper | No-reference Quality Assessment of Deblocked Images
目录 故事背景 本文方法(DBIQ) 发表在2016年Neurocomputing. 摘要 JPEG is the most commonly used image compression stand ...
- How to implement an algorithm from a scientific paper
Author: Emmanuel Goossaert 翻译 This article is a short guide to implementing an algorithm from a scie ...
- {ICIP2014}{收录论文列表}
This article come from HEREARS-L1: Learning Tuesday 10:30–12:30; Oral Session; Room: Leonard de Vinc ...
- Data Visualization – Banking Case Study Example (Part 1-6)
python信用评分卡(附代码,博主录制) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_camp ...
- How To Improve Deep Learning Performance
如何提高深度学习性能 20 Tips, Tricks and Techniques That You Can Use ToFight Overfitting and Get Better Genera ...
- CodeForces 219B Special Offer! Super Price 999 Bourles!
Special Offer! Super Price 999 Bourles! Time Limit:1000MS Memory Limit:262144KB 64bit IO For ...
- Apache 'mod_accounting'模块SQL注入漏洞(CVE-2013-5697)
漏洞版本: mod_accounting 0.5 漏洞描述: BUGTRAQ ID: 62677 CVE ID: CVE-2013-5697 mod_accounting是Apache 1.3.x上的 ...
- Play XML Entities
链接:https://pentesterlab.com/exercises/play_xxe/course Introduction This course details the exploitat ...
- Generic XXE Detection
参考连接:https://www.christian-schneider.net/GenericXxeDetection.html In this article I present some tho ...
随机推荐
- 网络传播模型Python代码实现
SI模型 import numpy as np import matplotlib.pyplot as plt import smallworld as sw #邻接矩阵 a = sw.a # 感染率 ...
- DirectShow 进行视频预览和录制
这一篇讲怎么采集摄像头图像并预览,以及录制视频到本地. 程序实现流程 这里通过使用 CaptureGraphBuilder 来简化 Graph 的创建流程. 具体流程如下: 初始化 COM 库 创建各 ...
- Google工作法
本文转自:https://www.yuque.com/heqingbao/msfy2c/zg56gm 这几天去上海参加Google开发者大会,利用空闲时间读了一本快餐书,书名叫<Google工作 ...
- vscode相关设置
一.如何设置vs每次点击文件打开新的窗口: 1.打开设置 2.搜索:"workbench.editor.enablePreview" 3.设置"workbench.edi ...
- Flink on YARN时,如何确定TaskManager数
转自: https://www.jianshu.com/p/5b670d524fa5 答案写在最前面:Job的最大并行度除以每个TaskManager分配的任务槽数. 问题 在Flink 1.5 Re ...
- .net core 中使用 openssl 公钥私钥进行加解密
这篇博文分享的是 C#中使用OpenSSL的公钥加密/私钥解密 一文中的解决方法在 .net core 中的改进.之前的博文针对的是 .NET Framework ,加解密用的是 RSACryptoS ...
- Nginx 极简教程(快速入门)
作者:dunwu github.com/dunwu/nginx-tutorial 推荐阅读(点击即可跳转阅读) 1. SpringBoot内容聚合 2. 面试题内容聚合 3. 设计模式内容聚合 4. ...
- 点云3D 目标检测
点云 点云是雷达采集到的信息. 关于点云基本介绍参考https://zhuanlan.zhihu.com/p/22581673 ros中的点云消息结构:http://docs.ros.org/jade ...
- Git 实用命令记录
自从上次写了一篇 Git 入门 的相关博客以来,一直自以为自己能完全的掌握 Git,其实不然,今天一小伙问我,如何删除远程上面的一个分支,呃,不会. git branch -d 分支名 只能删除本地的 ...
- ReSharper激活方法
激活方式选择License Keys. 激活码: MTW881U3Z5-eyJsaWNlbnNlSWQiOiJNVFc4ODFVM1o1IiwibGljZW5zZWVOYW1lIjoiTnNzIElt ...