题目链接

瞎jb贪一发就过了。首先度数<=2且编号最小的点一定是中序遍历最靠前的点,我们从这个点开始dfs一遍算出子树中度数<=2且编号最小的点记为\(f(i)\),然后从这个点开始一步一步确定出它到根的路径。

如果这个点度数还剩2(也就是除掉之前确定的左儿子后的度数),那么选\(f(i)\)小的作为右儿子,如果度数剩1,那么比较\(f(i)\)与i谁更小,若\(i<=f(i)\)则把i作为父亲否则作为右儿子。每次不断跳到它的父亲,没父亲了就是根了,之后的事就是把这条链上的每个点的右儿子的子树给确定出来,这个算出\(f(i)\)后搞一搞就行了,注意i只有一个儿子时若\(i<f(ch)\)那么把这个ch调到右边去。

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<vector>
#include<algorithm>
#include<cmath>
#define P puts("lala")
#define cp cerr<<"lala"<<endl
#define ln putchar('\n')
#define pb push_back
#define fi first
#define se second
#define mkp make_pair
using namespace std;
inline int read()
{
char ch=getchar();int g=1,re=0;
while(ch<'0'||ch>'9') {if(ch=='-')g=-1;ch=getchar();}
while(ch<='9'&&ch>='0') re=(re<<1)+(re<<3)+(ch^48),ch=getchar();
return re*g;
}
typedef long long ll;
typedef pair<int,int> pii; const int N=1000050;
const int inf=0x3f3f3f3f;
int deg[N],head[N],cnt=0;
pii oo=pii(inf,inf);
struct node
{
int to,next;
}e[N<<1];
inline void add(int x,int y)
{
e[++cnt]=(node){y,head[x]};head[x]=cnt;
}
int n,f[N],ch[N][2],g[N];
void dfs(int u,int fa)
{
pii minn=oo,sec=oo;
for(int i=head[u];i;i=e[i].next)
{
int v=e[i].to;
if(v==fa) continue;
dfs(v,u);
if(pii(f[v],v)<minn)
{
if(minn<sec) sec=minn;
minn=pii(f[v],v);
}
else if(pii(f[v],v)<sec) sec=pii(f[v],v);
}
if(minn==oo) f[u]=u,ch[u][0]=ch[u][1]=0;
else if(sec==oo)
{
if(u<minn.fi) ch[u][0]=0,ch[u][1]=minn.se,f[u]=u;
else ch[u][0]=minn.se,ch[u][1]=0,f[u]=minn.fi;
}
else ch[u][0]=minn.se,ch[u][1]=sec.se,f[u]=minn.fi;
} void dfs2(int u,int fa)
{
int tot=-1;
g[u]=inf;
if(deg[u]<=2) g[u]=u;
for(int i=head[u];i;i=e[i].next)
{
int v=e[i].to;
if(v==fa) continue;
dfs2(v,u);
ch[u][++tot]=v;
g[u]=min(g[u],g[v]);
}
if(tot==1&&g[ch[u][1]]<g[ch[u][0]]) swap(ch[u][0],ch[u][1]);
else if(tot==0&&g[ch[u][0]]>=ch[u][0]) ch[u][1]=ch[u][0],ch[u][0]=0;
} void print(int o)
{
if(ch[o][0]) print(ch[o][0]);
printf("%d ",o);
if(ch[o][1]) print(ch[o][1]);
} void wj()
{
#ifndef ONLINE_JUDGE
freopen("binary.in","r",stdin);
freopen("binary.out","w",stdout);
#endif
}
int main()
{
wj();
int i,j,opt,T;
n=read();
int minx=inf;
for(i=1;i<=n;++i)
{
deg[i]=read();
for(j=1;j<=deg[i];++j) add(i,read());
if(deg[i]<=2&&i<minx) minx=i;
}
dfs2(minx,0);
int u=minx;
while(u)
{
if(ch[u][0]) dfs(ch[u][0],u);
u=ch[u][1];
}
u=minx;
while(u)
{
printf("%d ",u);
if(ch[u][0]) print(ch[u][0]);
u=ch[u][1];
}
return 0;
}

LOJ2324「清华集训 2017」小Y和二叉树的更多相关文章

  1. loj2324 「清华集训 2017」小 Y 和二叉树

    https://loj.ac/problem/2324 太智障,一开始以为中序遍历的第一个点一定是一个叶子,想了个贪心.然而,手算了一下,第一个点都过不了啊. input 5 2 3 4 1 3 3 ...

  2. LOJ2324. 「清华集训 2017」小 Y 和二叉树【贪心】【DP】【思维】【好】

    LINK 思路 首先贪新的思路是处理出以一个节点为根所有儿子的子树中中序遍历起始节点最小是多少 然后这个可以两次dfs来DP处理 然后就试图确定中序遍历的第一个节点 一定是siz<=2的编号最小 ...

  3. Loj #2324. 「清华集训 2017」小 Y 和二叉树

    Loj #2324. 「清华集训 2017」小 Y 和二叉树 小Y是一个心灵手巧的OIer,她有许多二叉树模型. 小Y的二叉树模型中,每个结点都具有一个编号,小Y把她最喜欢的一个二叉树模型挂在了墙上, ...

  4. [LOJ#2324]「清华集训 2017」小Y和二叉树

    [LOJ#2324]「清华集训 2017」小Y和二叉树 试题描述 小Y是一个心灵手巧的OIer,她有许多二叉树模型. 小Y的二叉树模型中,每个结点都具有一个编号,小Y把她最喜欢的一个二叉树模型挂在了墙 ...

  5. loj #2325. 「清华集训 2017」小Y和恐怖的奴隶主

    #2325. 「清华集训 2017」小Y和恐怖的奴隶主 内存限制:256 MiB时间限制:2000 ms标准输入输出 题目类型:传统评测方式:文本比较   题目描述 "A fight? Co ...

  6. [LOJ#2323]「清华集训 2017」小Y和地铁

    [LOJ#2323]「清华集训 2017」小Y和地铁 试题描述 小Y是一个爱好旅行的OIer.一天,她来到了一个新的城市.由于不熟悉那里的交通系统,她选择了坐地铁. 她发现每条地铁线路可以看成平面上的 ...

  7. 【loj2325】「清华集训 2017」小Y和恐怖的奴隶主 概率dp+倍增+矩阵乘法

    题目描述 你有一个m点生命值的奴隶主,奴隶主受伤未死且当前随从数目不超过k则再召唤一个m点生命值的奴隶主. T次询问,每次询问如果如果对面下出一个n点攻击力的克苏恩,你的英雄期望会受到到多少伤害. 输 ...

  8. LibreOJ #2325. 「清华集训 2017」小Y和恐怖的奴隶主(矩阵快速幂优化DP)

    哇这题剧毒,卡了好久常数才过T_T 设$f(i,s)$为到第$i$轮攻击,怪物状态为$s$时对boss的期望伤害,$sum$为状态$s$所表示的怪物个数,得到朴素的DP方程$f(i,s)=\sum \ ...

  9. LOJ2325. 「清华集训 2017」小 Y 和恐怖的奴隶主【矩阵快速幂优化DP】【倍增优化】

    LINK 思路 首先是考虑怎么设计dp的状态 发现奴隶主的顺序没有影响,只有生命和个数有影响,所以就可以把每个生命值的奴隶主有多少压缩成状态就可以了 然后发现无论是什么时候一个状态到另一个状态的转移都 ...

随机推荐

  1. 手把手教你springboot集成微信支付

    20220727 最近要做一个微信小程序,需要微信支付,所以研究了下怎么在 java 上集成微信支付功能,特此记录下. 本文完整代码:点击跳转 准备工作 小程序开通微信支付 首先需要在微信支付的官网点 ...

  2. Pycharm5个非常有用的技巧

    PyCharm 是一款非常强大的编写 python 代码的工具.掌握一些小技巧能成倍的提升写代码的效率,本篇介绍几个经常使用的小技巧. 一.分屏展示 当你想同时看到多个文件的时候: 右击标签页: 选择 ...

  3. 创新能力加速产业发展,SphereEx 荣获“中关村银行杯”『大数据与云计算』领域 TOP1

    8 月 9 日下午,2022 中关村国际前沿科技创新大赛"中关村银行杯"大数据与云计算领域决赛在北京市门头沟区中关村(京西)人工智能科技园·智能文创园落下了帷幕.SphereEx ...

  4. 你必须学UML之理论篇

    1.前言 对于当前社会背景下从事软件开发的工作者而言,"写代码"实际上并不是唯一的工作.特别在一些中小型的企业当中,这些企业往往对于开发者的要求,不单单停留在写代码完成相应功能上, ...

  5. 痞子衡嵌入式:MCUXpresso IDE下设置代码编译优化等级的几种方法

    大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家分享的是MCUXpresso IDE下设置代码编译优化等级的几种方法. 最近公司芯片设计团队正在开发一款全新的基于 Cortex-M33 内核的 ...

  6. rh358 002 fact变量获取 ansible配置网络 service_facts

    通过ansible 获取网络信息 1.如何获取fact事实变量 方式1: ansible servera -m servera 方式2: 剧本 [root@workstation ansible]# ...

  7. windows优化原神

    原神3.0新地图很卡顿? 锐距显卡带不动? 看一下我的配置 英特尔i5-1135G7 内存16GB可以拓展32GB 固态512GB 原神优化前帧率50左右 优化后59-60最差55 展示图原神设置图 ...

  8. Python入门系列(六)一篇学会python函数

    函数 函数是只在调用时运行的代码块. def my_function(): print("Hello from a function") my_function() 信息可以作为参 ...

  9. Javaweb___Jquery高级

    今日内容: 1. JQuery 高级 1. 动画 2. 遍历 3. 事件绑定 4. 案例 5. 插件 JQuery 高级 1. 动画 1. 三种方式显示和隐藏元素 1. 默认显示和隐藏方式 1. sh ...

  10. .Net Core 配置文件读取 - IOptions、IOptionsMonitor、IOptionsSnapshot

    原文链接:https://www.cnblogs.com/ysmc/p/16637781.html 众所周知,appsetting.json 配置文件是.Net 的重大革新之心,抛开了以前繁杂的xml ...