2021.07.17 P3177 树上染色(树形DP)
2021.07.17 P3177 树上染色(树形DP)
[P3177 HAOI2015]树上染色 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)
重点:
1.dp思想是需要什么,维护什么。
2.通过具体的状态推出未知状态的解法。
题意:
一棵有n个点的树,将其中k个点染为黑色,其余点为白色,求任意一对白白两点之间的距离和与任意一对黑黑两点之间的距离。
分析:
dp思想是需要什么,维护什么。我们需要求距离和,我们就维护距离和。
在已经确定哪些点是黑点是,对于一条边,它对答案的贡献是端点u、v两端是
\]
但我们还不知道哪些点是黑点,所以我们也要列出不同黑点个数,进行状态转移。
设ans[i] [j]为在以i为根的子树中,有j个点是黑点时的总贡献,依次枚举i可能的黑点个数、i的每一个子节点、以该子节点为根的子树可能的黑点的个数进行状态转移。具体分析在代码中。
代码如下:
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cstring>
using namespace std;
#define int long long
const int N=2010;
int n,k,size[N],cnt,head[N],ans[N][N];
struct node{
int to,next,val;
}a[N*2];
inline int read(){
int s=0,w=1;
char ch=getchar();
while(ch<'0'||ch>'9'){
if(ch=='-')w=-1;
ch=getchar();
}
while(ch<='9'&&ch>='0'){
s=s*10+ch-'0';
ch=getchar();
}
return s*w;
}
void add(int u,int v,int w){
++cnt;
a[cnt].to=v;
a[cnt].val=w;
a[cnt].next=head[u];
head[u]=cnt;
}
void dfs(int x,int fa){
size[x]=1;
ans[x][0]=ans[x][1]=0;
for(int i=head[x];i;i=a[i].next){
int v=a[i].to;
if(v==fa)continue;
dfs(v,x);
size[x]+=size[v];
for(int j=min(k,size[x]);j>=0;j--){
if(ans[x][j]!=-1)
ans[x][j]+=ans[v][0]+size[v]*(n-k-size[v])*a[i].val;//当以x为根的子树中黑点个数为0时的贡献
for(int l=min(j,size[v]);l>0;l--){
if(ans[x][j-l]==-1)continue;//当这个子树中黑点个数为j-l这一状态还没开始计算时,果断跳过
ans[x][j]=max(ans[x][j],ans[x][j-l]+ans[v][l]+(l*(k-l)+(size[v]-l)*(n-k-size[v]+l))*a[i].val);//注意:计算的时候这条边会产生的贡献,以j为根节点的子树有l个黑点,所以这条边因为黑点产生的贡献为l*(k-l)*a[i].val,白点产生的贡献为(size[v]-l)*(n-k-size[v]+l)*a[i].val,而以x为根节点的子树此时有j-l个黑点,以v为根节点的子树有l个黑点
}
}
}
}
signed main(){
//freopen("1.in","r",stdin);
//freopen("1.out.txt","w",stdout);
n=read();k=read();
if(n-k<k)k=n-k;
for(int i=1;i<n;i++){
int u,v,w;
u=read();v=read();w=read();
add(u,v,w);
add(v,u,w);
}
memset(ans,-1,sizeof(ans));
dfs(1,0);
cout<<ans[1][k];
return 0;
}
2021.07.17 P3177 树上染色(树形DP)的更多相关文章
- 洛谷 P3177 [HAOI2015]树上染色 树形DP
洛谷 P3177 [HAOI2015]树上染色 树形DP 题目描述 有一棵点数为 \(n\) 的树,树边有边权.给你一个在 \(0 \sim n\)之内的正整数 \(k\) ,你要在这棵树中选择 \( ...
- 【BZOJ4033】[HAOI2015]树上染色 树形DP
[BZOJ4033][HAOI2015]树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染 ...
- bzoj 4033: [HAOI2015]树上染色 [树形DP]
4033: [HAOI2015]树上染色 我写的可是\(O(n^2)\)的树形背包! 注意j倒着枚举,而k要正着枚举,因为k可能从0开始,会使用自己更新一次 #include <iostream ...
- 【HAOI2015】树上染色—树形dp
[HAOI2015]树上染色 [题目描述]有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染成白色.将所有点染色后,你会获得 ...
- [BZOJ4033][HAOI2015]树上染色(树形DP)
4033: [HAOI2015]树上染色 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 2437 Solved: 1034[Submit][Stat ...
- 【BZOJ4033】【HAOI2015】树上染色 树形DP
题目描述 给你一棵\(n\)个点的树,你要把其中\(k\)个点染成黑色,剩下\(n-k\)个点染成白色.要求黑点两两之间的距离加上白点两两之间距离的和最大.问你最大的和是多少. \(n\leq 200 ...
- bzoj4033 [HAOI2015]树上染色——树形DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4033 树形DP,状态中加入 x 与父亲之间的边的贡献: 边权竟然是long long... ...
- 【HAOI2015】树上染色 - 树形 DP
题目描述 有一棵点数为 N 的树,树边有边权.给你一个在 0~ N 之内的正整数 K ,你要在这棵树中选择 K个点,将其染成黑色,并将其他 的N-K个点染成白色 . 将所有点染色后,你会获得黑点两两之 ...
- BZOJ 4033 [HAOI2015]树上染色 ——树形DP
可以去UOJ看出题人的题解. 这样的合并,每一个点对只在lca处被考虑到,复杂度$O(n^2)$ #include <map> #include <ctime> #includ ...
随机推荐
- 内网渗透----windows信息收集整理
一.基础信息收集 1.信息收集类型 操作系统版本.内核.架构 是否在虚拟化环境中,已安装的程序.补丁 网络配置及连接 防火墙设置 用户信息.历史纪录(浏览器.登陆密码) 共享信息.敏感文件.缓存信息. ...
- Java有没有goto?
goto是Java中的保留字,暂时还不是Java的关键字.
- @Bean和@Componet区别
无意在两个类上看到了这两个注解,一个使用了@Bean配合@Configuration,一个使用了@Componet.依稀记得这两个注解都是实现以前在xml中<bean xxx/>的功能,但 ...
- Xml 映射文件中,除了常见的 select|insert|updae|delete 标签之外,还有哪些标签?
<resultMap>.<parameterMap>.<sql>.<include>. <selectKey>,加上动态 sql 的 9 个 ...
- SpringDataJpa备忘录
单向多对一关系 //产品类型 一的一方 @Entity public class ProductDir { @Id @GeneratedValue private Long id; private S ...
- Java动态代理和CGLib代理
本文参考 在上一篇"Netty + Spring + ZooKeeper搭建轻量级RPC框架"文章中涉及到了Java动态代理和CGLib代理,在这篇文章中对这两种代理方式做详解 下 ...
- 4-Pandas数据预处理之数据转换(df.map()、df.replace())
在数据分析中,根据需求,有时候需要将一些数据进行转换,而在Pandas中,实现数据转换的常用方法有: 利用函数或是映射 可以将自己定义的或者是其他包提供的函数用在Pandas对象上实现批量修改. ap ...
- (stm32f103学习总结)—stm32定时器中断
一.定时器介绍 STM32F1的定时器非常多,由2个基本定时器(TIM6.TIM7).4个通 用定时器(TIM2-TIM5)和2个高级定时器(TIM1.TIM8)组成.基本定 时器的功能最为简单,类似 ...
- numpy计算数组中满足条件的个数
Numpy计算数组中满足条件元素个数 需求:有一个非常大的数组比如1亿个数字,求出里面数字小于5000的数字数目 1. 使用numpy的random模块生成1亿个数字 2. 使用Python原生语法实 ...
- html 常用标签及基本用法
一个网页基本是由 结构(html) + 样式(css) + 脚本(js) 组成.学习的话 应该从最基本的标签开始, 结构清晰了, 再用css美化, 最后可以用脚本加上特效 块级 和 行类标签 特点: ...