hello大家好,我是小楼。

最近踩了个DNS解析的小坑,虽然问题解决了,但排查过程比较曲折,最后还是有一点没有想通,整个过程分享给大家。

背景

最近负责的服务要置换机器。置换机器可能很多小伙伴不知道是干啥,因为大家平时接触不到,我简单解释一下什么是机器置换以及为什么需要机器置换。

机器置换通俗地讲就是更换机器,把服务从一台机器迁移到另一台上去。

为什么要机器置换呢? 表面原因可能是机器硬件故障、或者机器过了保修期。

有些小伙伴可能就想问,我在公司也负责了很多服务,为啥从来没有置换过机器呢?原因可能是用了容器,没有直接部署在物理机上,置换机器的任务被转移给了云平台的运维人员;还可能是你们有专门的运维帮忙做了这件事,对开发人员来说几乎是透明的。

我负责的服务为啥要置换呢?因为机器过保了。服务为啥部署在物理机上呢?因为它是个基础服务,和一般服务不太一样,有一些限制,只能在物理机上部署。为啥没有运维人员帮忙呢?因为公司很多基础服务是自运维,开发者既做开发又是运维。

说完机器置换,再来聊聊这个基础服务,它是一个Go写的服务,不停地发送HTTP请求,记住这点就好,其他不重要。

这个服务在置换机器后,HTTP请求的耗时慢了不少,如下图,黄色为老机器,蓝色为新机器,指标的值就是HTTP请求的耗时(毫秒),大概1.5倍的差距。这就是今天要分享的问题,接下来说说我的排查过程。

问题排查

这种情况,先去看了机器的各项指标,如CPU、网络情况等等,看看是否有异常,确认是否被其他指标影响了。但看了一圈下来,发现新机器的各项指标甚至还优于老机器。

接着去询问了提供机器的同学,看看机器是否有异常,结果也是没有。

既然HTTP请求变慢,就想到看看是请求的哪个环节变慢了,用如下的命令来测试下,域名我用百度的域名来代替:

curl -o /dev/null -s -w %{time_namelookup}::%{time_connect}::%{time_total}"\n" http://www.baidu.com

这里的各个参数代表含义(还有一些其他参数也可用):

  • time_total 总时间,按秒计。精确到小数点后三位。
  • time_namelookup DNS解析时间,从请求开始到DNS解析完毕所用时间。
  • time_connect 连接时间,从开始到建立TCP连接完成所用时间,包括前边DNS解析时间,如果需要单纯的得到连接时间,用这个time_connect时间减去前边time_namelookup时间。以下同理,不再赘述。
  • time_appconnect 连接建立完成时间,如SSL/SSH等建立连接或者完成三次握手时间。
  • time_pretransfer 从开始到准备传输的时间。
  • time_redirect 重定向时间,包括到最后一次传输前的几次重定向的DNS解析,连接,预传输,传输时间。
  • time_starttransfer 开始传输时间。在client发出请求之后,Web 服务器返回数据的第一个字节所用的时间

这样能看到域名解析、连接、传输各个阶段的耗时情况,新老机器对比,如果有一项特别高,那么这项肯定有问题

  • 新机器:0.001484::0.001743::0.007489
  • 老机器:0.000681::0.000912::0.002475

简单计算一下:

  • 新机器:DNS解析耗时0.001484秒,连接建立耗时0.000258秒,总耗时0.007489秒
  • 老机器:DNS解析耗时0.000681秒,连接建立耗时0.000231秒,总耗时0.002475秒

虽然从这次的测试数据来看,新机器DNS解析似乎慢了一点,但你仔细看这个数值,几乎对请求的总体耗时没啥影响,而且多测试几次,发现这两台机器的DNS解析其实差不多。

但还是不放心,验证DNS是否存在问题,再用dig命令去试一下

dig www.baidu.com

执行时,明显感觉到了卡顿,确定是DNS有问题了。

问题解决

一开始,我去网上搜索了一下DNS慢的相关文章,找到了一篇文章《记一次Go net库DNS问题排查》,但稍微验证了下,和我的case没啥关系,文章是好文章,所以也贴个链接,感兴趣可以读读。

《记一次Go net库DNS问题排查》https://juejin.cn/post/6948469896007122974

接着就去找了网络组的同学,网络组的同学稍微看了一眼就知道原因了,说新机器没有安装DNSmasq,这又是个啥?不要慌,先去网上查下再接话。

DNSmasq 提供 DNS 缓存和 DHCP 服务功能。作为域名解析服务器(DNS),DNSmasq可以通过缓存 DNS 请求来提高对访问过的网址的连接速度。作为DHCP 服务器,DNSmasq 可以用于为局域网电脑分配内网ip地址和提供路由。DNS和DHCP两个功能可以同时或分别单独实现。DNSmasq轻量且易配置,适用于个人用户或少于50台主机的网络。此外它还自带了一个 PXE 服务器。

简单来说,这里它扮演的是一个DNS缓存的角色,提高DNS的查询速度。

说到这里,插播一个小知识,我一直以为DNS会被操作系统缓存,不知道你们有没有这样的错觉,但实际上,Linux下如果没有特殊处理,每一次DNS解析都要查询DNS服务器。很好证明,可以用tcpdump抓DNS的包试试,我当时也试了下,每次都会去远程拿DNS解析结果。这个结论在《TCP/IP详解卷1》中也能找到相关的描述:

只有Windows和比较新的Linux系统可以在客户端缓存DNS,而且Linux系统是需要手动开启的,所以默认情况下都要去远程获取DNS缓存。

言归正传,网络组同学说要么装一个DNSmasq,要么改下DNS服务器的配置,也就是/etc/resolv.conf文件,由于机器上已经有服务了,所以选择了改配置这种比较安全的方式。

没改之前,/etc/resolv.conf 的第一行是127.0.0.1,也就是将本地也作为DNS服务器,但实际上本地没有开启DNS服务,网络组同学说,去掉第一行配置或者安装DNSmasq都可以。

先是去掉了127.0.0.1的配置,结果耗时不变!

随后加上127.0.0.1的配置,又安装了DNSmasq后,耗时就降下去了。

整个解决的过程,程序没有重启,唯一的变量是安装了DNSmasq,所以这一定是DNS的锅了。

问题反思

虽然问题解决了,但我还有几个疑问:

  1. 为什么配置了127.0.0.1的DNS server,但没有开启DNSmasq呢?
  2. 为什么去掉127.0.0.1配置会无效呢?

第1个问题比较好搞清楚,问了下系统部的同学,他说本来是应该开启DNSmasq的,但出了一点点小差错,结果只配置了127.0.0.1。

再看第2个问题,DNS本地缓存和远程查询差距这么大吗?据网络组同学说DNS server是公司内自建的,内网传输,实际并不慢,用dig也好测试,使用第2、3行的DNS server测试下,发现dig的速度都很快。

dig www.baidu.com @host

为什么有了127.0.0.1的配置就变得很慢呢?下面就从我的几个猜测入手,一个个证明,但在猜测之前,我们先了解一下Go程序解析DNS的流程。

Go的DNS解析流程

Go的DNS解析分为两种:

  • cgo方式,调用c语言标准库的实现
  • 纯Go代码实现

由于要适配各个平台,所以又有了各个平台的实现。

这部分代码位于net包下,想要跟踪也很简单,写个建立连接的代码,一步步debug,找到域名解析的地方。

我直接告诉你从lookup_unix.go文件的lookupIP方法看起,当然这只是Unix系统,包括Mac和Linux,不过Mac不走纯Go的代码,它被强制走到cgo了,在Linux上没有特殊配置是走纯Go实现的DNS解析,以下代码以Linux为例:

func (r *Resolver) lookupIP(ctx context.Context, network, host string) (addrs []IPAddr, err error) {
// ①强制走纯Go的DNS解析器
if r.preferGo() {
return r.goLookupIP(ctx, host)
}
// ②根据解析顺序解析
order := systemConf().hostLookupOrder(r, host)
if order == hostLookupCgo {
if addrs, err, ok := cgoLookupIP(ctx, network, host); ok {
return addrs, err
}
// cgo not available (or netgo); fall back to Go's DNS resolver
// ③如果cgo搞不定,降级到先文件再DNS
order = hostLookupFilesDNS
}
ips, _, err := r.goLookupIPCNAMEOrder(ctx, host, order)
return ips, err
}

这里order有如下几种

hostLookupCgo      hostLookupOrder = iota // cgo
hostLookupFilesDNS // 文件优先
hostLookupDNSFiles // DNS优先
hostLookupFiles // 只查文件
hostLookupDNS // 只查DNS

这里的文件也就是/etc/hosts,goLookupIP 最终也调用了 goLookupIPCNAMEOrder,但goLookupIPCNAMEOrder这个方法的代码太长,所以我这里只讲一下大致的流程:

  1. 如果需要先查询hosts文件,则先查,查到直接返回
  2. 读取/etc/resolv.conf文件,拿出DNS server的配置,并且每5秒更新一次
  3. 构造DNS请求并向服务器发送,UDP读取的超时时间默认为5秒,可在/etc/resolv.conf文件中配置,同一个域名的不同类型(如ipv4和ipv6)的查询可配置为并行或串行
  4. 向DNS server发送请求采用的是轮询机制,如果其中一个server请求出错,则顺延至下一个,重试次数默认为2,可在/etc/resolv.conf文件中配置
  5. 最后解析查询结果并返回,如果结果为空,且配置了hosts文件兜底,则查询一次文件

好了,流程简单介绍到这里,接下来验证我的几个猜想。

猜想一:Go是否只在程序启动时读取一次/etc/resolv.conf文件

这个猜想的依据是,如果查询DNS时拿到了127.0.0.1的DNS server,且本地未开启DNS服务时,可能会慢,且配置文件如果修改了,Go程序如果只在初始化时读一次文件,那自然改配置文件无效。

但事实并非如此,上面也说了,Go在读取DNS配置文件时是惰性地每隔5秒更新一次

func (conf *resolverConfig) tryUpdate(name string) {
// 初始化,只做一次
conf.initOnce.Do(conf.init)
// ...
now := time.Now()
if conf.lastChecked.After(now.Add(-5 * time.Second)) {
return
}
conf.lastChecked = now
// ...
dnsConf := dnsReadConfig(name)
conf.mu.Lock()
conf.dnsConfig = dnsConf
conf.mu.Unlock()
}

而且我做了个实验,写了个DNS解析的测试代码,放在有127.0.0.1配置但未开启DNSmasq的服务器上跑,抓127.0.0.1 53端口(DNS默认端口)的包,发现是有流量的,然后修改/etc/resolv.conf配置,去掉127.0.0.1,发现抓不到127.0.0.1 53端口的流量了,这证明和代码逻辑一致,本猜想不成立。

猜想二:DNS查询远程比本地慢很多

这个很好证明,还是用上面的程序

  1. 放在无127.0.0.1配置的服务器上跑
  2. 放在有127.0.0.1配置且开启DNSmasq的服务器上跑

结果两者耗时差不多,甚至他们和在有127.0.0.1配置但未开启DNSmasq的服务器上的耗时也基本一致。

这说明无论怎样查询DNS都不慢。

猜想三:是否是并发太高导致

为什么我会有这个猜想呢,一是线上的QPS大概是50左右,和上面测试的场景不太一样,二是我在上面的代码中看到了锁,是不是并发高了之后,锁带来的开销变大导致?

我写了个100并发的代码,去查询DNS,结果发现这段代码在如下三种场景,耗时都差不多

  1. 无127.0.0.1配置的服务器
  2. 有127.0.0.1配置且开启DNSmasq的服务器
  3. 有127.0.0.1配置且未开启DNSmasq的服务器

同时我也去问了网络组的同学,他说DNS server能抗住百万QPS,服务端没有压力。

最后

写到最后,我emo了~虽然问题解决了,但为什么当时DNS查询慢还是不知道,如果你看了文章知道其中哪里有问题,或者有什么比较好的排查方法,欢迎来探讨,反正我是查不下去了。

最后再说一句,写文章很辛苦,需要点鼓励,来个点赞在看关注吧,我们下期再见。

搜索关注微信公众号"捉虫大师",后端技术分享,架构设计、性能优化、源码阅读、问题排查、踩坑实践。

踩了个DNS解析的坑,但我还是没想通的更多相关文章

  1. Grafana展示DNS解析延时

      首先一个完整的监控肯定会包含三个部分:1.数据收集部分.2.数据存储部分.3.数据展示部分,今天我也是从这三个方面来实现这个监控的. 数据收集(SHELL 脚本)   没有想到比较好的方法来采集数 ...

  2. DNS解析过程详解

    先说一下DNS的几个基本概念: 一. 根域 就是所谓的“.”,其实我们的网址www.baidu.com在配置当中应该是www.baidu.com.(最后有一点),一般我们在浏览器里输入时会省略后面的点 ...

  3. C#实现DNS解析服务和智能DNS服务

    C#实现DNS解析服务有一个开源项目ARSoft.Tools.Net, ARSoft.Tools.Net是一个非常强大的开源DNS控件库,包含.Net SPF validation, SenderID ...

  4. 解决域名DNS解析的故障

    在实际应用过程中可能会遇到DNS解析错误的问题,就是说当我们访问一个域名时无法完成将其解析到IP地址的工作,而直接输入网站IP却可以正常访问,这就是因为DNS解析出现故障造成的.这个现象发生的机率比较 ...

  5. LINUX DNS解析的3种修改方法~

    1.HOST 本地DNS解析 vi /etc/hosts 添加规则 例如: 223.231.234.33 www.baidu.com 2.网卡配置文件DNS服务地址  vi /etc/sysconfi ...

  6. DNS解析过程和域名收敛、域名发散、SPDY应用

    前段时间项目要做域名收敛,糊里糊涂的完成了,好多原理不清晰,现在整理搜集下知识点. 域名收敛的目的是什么?简单来说就是域名解析慢.那为什么解析慢?且听下文慢慢道来. 什么是DNS? DNS( Doma ...

  7. 通过统计用户DNS解析记录,实现监控用户上网行为

    上次通过扫描抓包分析TTL的方式检测公司网络开放的端口,发现没有开放53端口(DNS),也就是在公司内部的主机只能用服务器自动分配的DNS,并且发现这是台内部服务器.今天发现bing上不去,检测后发现 ...

  8. DNS解析全过程及原理

    DNS解析原理及过程. 当用户访问我们网站一个网页时,他需要经过以下步骤: 1)找到这个网页的存放服务器: 2)服务器将用户的请求信息接入: 3)服务器通过文件路径(URL)查找用户请求网页: 4)用 ...

  9. 使用dig查询dns解析

    原文地址:使用dig查询dns解析 作者:chenwenming 一般来说linux下查询域名解析有两种选择,nslookup或者dig,而在使用上我觉得dig更加方便顺手. 如果是在debian下的 ...

随机推荐

  1. 【Calculate】Calculate Linux安装操作记录

    镜像下载.域名解析.时间同步请点击 阿里云开源镜像站 一.Calculate简介 Calculate Linux 是一个基于 Gentoo的发行版本. Calculate 目录服务器 (CDS) 是一 ...

  2. zookeeper可视化WEB工具(zkui)搭建与配置

    前提:zookeeper 可视化WEB工具zkui依赖java环境,因此需要安装jdk,同时zkui源码要Maven编译,需要安装apache-maven. JDK下载地址:https://www.o ...

  3. 如何构建Docker镜像

    构建Docker 镜像有如下两种方法: (一)使用docker commit命令.(二)使用docker build命令和 Dockerfile 文件.在这里并不推荐使用docker commit来构 ...

  4. 内网代理工具--reGeorg

    一.简介 reGeorg是reDuh的继承者,利用了会话层的socks5协议,效率更高结合Proxifier使用 Proxifier是一款功能非常强大的socks5客户端,可以让不支持通过代理服务器工 ...

  5. S2-045(RCE远程代码执行)

    环境搭建: https://blog.csdn.net/qq_36374896/article/details/84145020 漏洞复现 进入漏洞环境 (048和045一样) cd vulhub-m ...

  6. json知识点总结(一)--基础介绍

    前言 JSON是一种轻量化的数据编码方式它不依赖于编程语言是独立的文本格式.和xml相比JSON具有格式简洁,转译速度快的特点,因此现在被广泛使用.JSON的本质是字符串,采用了特定的分隔方式对字符串 ...

  7. 最新出炉的Java面试题(2022亲身经历)

    面试题清单 个人近来面试了不少的公司的,该挂的挂,该应付通过的应付通过,目前对面试题部分做一个系统的总结.最起码要保证被问过的问题第二次被问到的时候是可以回答并且理解的.算是一个被动输入学习的过程. ...

  8. 什么是 FreeMarker 模板?

    FreeMarker 是一个基于 Java 的模板引擎,最初专注于使用 MVC 软件架构进行动态网页生成.使用 Freemarker 的主要优点是表示层和业务层的完全分离.程序员可以处理应用程序代码, ...

  9. State Lattice Planner(状态栅格规划)

    参考文献: Efficient constrained path planning via search in state lattices Differentially Constrained Mo ...

  10. 微信小程序 iphone6 和 iphone6plus 如何设置rpx单位,通俗易懂的方法

    pt:屏幕物理像素(屏幕实际宽度像素) px:屏幕分辨率 pt和px关系:iphone6plusppi密度高,1pt里有3px,iphone6 1pt里有2px. iphone6宽度 (物理像素) : ...