[编程基础] C++多线程入门5-使用互斥锁解决资源竞争
原始C++标准仅支持单线程编程。新的C++标准(称为C++11或C++0x)于2011年发布。在C++11中,引入了新的线程库。因此运行本文程序需要C++至少符合C++11标准。
5 使用互斥锁解决资源竞争
在本文中,我们将讨论如何使用互斥锁来保护多线程环境中的共享数据并避免资源竞争。为了解决多线程环境中的资源竞争,我们需要互斥锁,即每个线程都需要在修改或读取共享数据之前锁定互斥锁,并且在修改数据之后,每个线程都应解锁互斥锁。
5.1 std::mutex
在C++11线程库中,互斥锁位于mutex头文件中。表示互斥锁的类是std::mutex类
互斥锁有两种重要的方法:
- lock()
- unlock()
我们已经在上一篇文章中使用多线程钱包解释了资源竞争。在本文中,我们将看到如何使用std::mutex修复该多线程钱包中的资源竞争。由于电子钱包提供了在电子钱包中添加资金的服务,并且在不同线程之间使用了相同的电子钱包对象,因此我们需要在电子钱包的addMoney()方法中添加锁定,即在增加电子钱包的货币之前获取锁并在离开该钱包之前释放锁功能。让我们看一下代码:
内部维护货币并提供服务/功能的钱包类,即addMoney()。
该成员函数首先获取一个锁,然后将钱包对象的内部货币增加指定的数量,然后释放该锁。
#include<iostream>
#include<thread>
#include<vector>
#include<mutex>
class Wallet
{
int mMoney;
std::mutex mutex;
public:
Wallet() :mMoney(0) {}
int getMoney() { return mMoney; }
void addMoney(int money)
{
mutex.lock();
for (int i = 0; i < money; ++i)
{
mMoney++;
}
mutex.unlock();
}
};
现在,让我们创建5个线程,所有这些线程将共享Wallet类的同一对象,并使用其addMoney()成员函数并行向内部货币添加100000。因此,如果最初在钱包中的钱为0。那么在完成所有线程的执行后,在Wallet中的钱应该为500000。并且此互斥锁可确保电子钱包中的资金最终为500000。让我们测试一下:
#include<iostream>
#include<thread>
#include<vector>
#include<mutex>
class Wallet
{
int mMoney;
std::mutex mutex;
public:
Wallet() :mMoney(0) {}
int getMoney() { return mMoney; }
void addMoney(int money)
{
mutex.lock();
for (int i = 0; i < money; ++i)
{
mMoney++;
}
mutex.unlock();
}
};
int testMultithreadedWallet()
{
Wallet walletObject;
std::vector<std::thread> threads;
for (int i = 0; i < 5; ++i) {
threads.push_back(std::thread(&Wallet::addMoney, &walletObject, 100000));
}
for (int i = 0; i < threads.size(); i++)
{
threads.at(i).join();
}
return walletObject.getMoney();
}
int main()
{
int val = 0;
for (int k = 0; k < 10; k++)
{
if ((val = testMultithreadedWallet()) != 500000)
{
std::cout << "Error at count = " << k << " Money in Wallet = " << val << std::endl;
//break;
}
else
{
std::cout << "Now count = " << k << " Money in Wallet = " << val << std::endl;
//break;
}
}
return 0;
}
输出为:
Now count = 0 Money in Wallet = 500000
Now count = 1 Money in Wallet = 500000
Now count = 2 Money in Wallet = 500000
Now count = 3 Money in Wallet = 500000
Now count = 4 Money in Wallet = 500000
Now count = 5 Money in Wallet = 500000
Now count = 6 Money in Wallet = 500000
Now count = 7 Money in Wallet = 500000
Now count = 8 Money in Wallet = 500000
Now count = 9 Money in Wallet = 500000
可以保证不会发现钱包中的钱少于500000的单个情况。因为addMoney中的互斥锁可确保一旦一个线程完成了钱的修改,则只有其他任何线程才能修改Wallet中的钱。
但是,如果我们忘记在功能结束时解锁互斥锁,该怎么办?在这种情况下,一个线程将退出而不释放锁,而其他线程将保持等待状态。如果锁定互斥锁后发生某些异常,则可能发生这种情况。为了避免这种情况,我们应该使用std::lock_guard。
5.2 std::lock_guard
Lock_Guard是一个类模板,它实现了互斥锁的RAII。它将互斥体包装在其对象中,并将附加的互斥体锁定在其构造函数中。当调用它的析构函数时,它会释放互斥锁。让我们看看代码:
#include<iostream>
#include<thread>
#include<vector>
#include<mutex>
class Wallet
{
int mMoney;
std::mutex mutex;
public:
Wallet() :mMoney(0) {}
int getMoney() { return mMoney; }
void addMoney(int money)
{
// 在构造函数中,它锁定互斥锁 In constructor it locks the mutex
std::lock_guard<std::mutex> lockGuard(mutex);
for (int i = 0; i < money; ++i)
{
// If some exception occurs at this poin then destructor of lockGuard will be called due to stack unwinding.
// 如果在此位置发生异常,则由于堆栈展开,将调用lockGuard的析构函数。
mMoney++;
}
// Once function exits, then destructor of lockGuard Object will be called. In destructor it unlocks the mutex.
//一旦函数退出,则析构函数,将调用析构函数中的lockGuard对象,它解锁互斥锁。
}
};
int testMultithreadedWallet()
{
Wallet walletObject;
std::vector<std::thread> threads;
for (int i = 0; i < 5; ++i) {
threads.push_back(std::thread(&Wallet::addMoney, &walletObject, 100000));
}
for (int i = 0; i < threads.size(); i++)
{
threads.at(i).join();
}
return walletObject.getMoney();
}
int main()
{
int val = 0;
for (int k = 0; k < 10; k++)
{
if ((val = testMultithreadedWallet()) != 500000)
{
std::cout << "Error at count = " << k << " Money in Wallet = " << val << std::endl;
//break;
}
else
{
std::cout << "Now count = " << k << " Money in Wallet = " << val << std::endl;
//break;
}
}
return 0;
}
输出为:
Now count = 0 Money in Wallet = 500000
Now count = 1 Money in Wallet = 500000
Now count = 2 Money in Wallet = 500000
Now count = 3 Money in Wallet = 500000
Now count = 4 Money in Wallet = 500000
Now count = 5 Money in Wallet = 500000
Now count = 6 Money in Wallet = 500000
Now count = 7 Money in Wallet = 500000
Now count = 8 Money in Wallet = 500000
Now count = 9 Money in Wallet = 500000
5.3 参考
https://thispointer.com//c11-multithreading-part-5-using-mutex-to-fix-race-conditions/
[编程基础] C++多线程入门5-使用互斥锁解决资源竞争的更多相关文章
- 多任务-python实现-同步概念,互斥锁解决资源竞争(2.1.4)
@ 目录 1.同步的概念 2.解决线程同时修改全局变量的方式 3.互斥锁 1.同步的概念 同步就是协同步调,按照预定的先后次序进行运行,如你说完我在说 同步在子面上容易理解为一起工作 其实不是,同指的 ...
- [编程基础] C++多线程入门7-条件变量介绍
原始C++标准仅支持单线程编程.新的C++标准(称为C++11或C++0x)于2011年发布.在C++11中,引入了新的线程库.因此运行本文程序需要C++至少符合C++11标准. 文章目录 7 条件变 ...
- [编程基础] C++多线程入门6-事件处理的需求
原始C++标准仅支持单线程编程.新的C++标准(称为C++11或C++0x)于2011年发布.在C++11中,引入了新的线程库.因此运行本文程序需要C++至少符合C++11标准. 文章目录 6 事件处 ...
- [编程基础] C++多线程入门8-从线程返回值
原始C++标准仅支持单线程编程.新的C++标准(称为C++11或C++0x)于2011年发布.在C++11中,引入了新的线程库.因此运行本文程序需要C++至少符合C++11标准. 8 从线程返回值 8 ...
- [编程基础] C++多线程入门4-数据共享和资源竞争
原始C++标准仅支持单线程编程.新的C++标准(称为C++11或C++0x)于2011年发布.在C++11中,引入了新的线程库.因此运行本文程序需要C++至少符合C++ 11标准. 4 数据共享和资源 ...
- [编程基础] C++多线程入门1-创建线程的三种不同方式
原始C++标准仅支持单线程编程.新的C++标准(称为C++11或C++0x)于2011年发布.在C++11中,引入了新的线程库.因此运行本文程序需要C++至少符合C++11标准. 1 创建线程的三种不 ...
- [编程基础] C++多线程入门10-packaged_task示例
原始C++标准仅支持单线程编程.新的C++标准(称为C++11或C++0x)于2011年发布.在C++11中,引入了新的线程库.因此运行本文程序需要C++至少符合C++11标准. 文章目录 10 pa ...
- [编程基础] C++多线程入门9-async教程和示例
原始C++标准仅支持单线程编程.新的C++标准(称为C++11或C++0x)于2011年发布.在C++11中,引入了新的线程库.因此运行本文程序需要C++至少符合C++11标准. 文章目录 9 asy ...
- [编程基础] C++多线程入门3-小心地将参数传递给线程
原始C++标准仅支持单线程编程.新的C++标准(称为c++11或c++0x)于2011年发布.在c++11中,引入了新的线程库.因此运行本文程序需要C++至少符合c++11标准. 文章目录 3 小心地 ...
随机推荐
- day09-1存储引擎
存储引擎 1.基本介绍 基本介绍 MySQL的表类型由存储引擎(Storage Engines)决定,主要包括MyISAM.innoDB.Memory等 MySQL数据表主要支持六种类型,分别是:CS ...
- Docker 部署 Kibana
Docker 部署 Kibana 本篇主要介绍 使用 Docker 部署 kibana 用于操作 Elasticsearch 使用. 1. 前置准备 1.1 Elasticsearch 准备 可以先准 ...
- SpringMVC访问不到默认页的问题。
在web.xml中配置了 <welcome-file-list> <welcome-file>index.html</welcome-file> </welc ...
- Docker | dockerfile构建centos镜像,以及CMD和ENTRYPOINT的区别
构建自己的centos镜像 docker pull centos下载下来的镜像都是基础版本,缺少很多常用的命令功能,比如:ll.vim等等, 下面介绍制作一个功能较全的自己的centos镜像. 步骤 ...
- 发送HTTP请求方法- 留着自用
/** * 发送HTTP请求方法,目前只支持CURL发送请求 * @param string $url 请求URL * @param array $data POST的数据,GET请求时该参数无效 * ...
- springboot项目中使用shiro实现用户登录以及权限的验证
欢迎大家加入我的社区:http://t.csdn.cn/Q52km 社区中不定时发红包 更加高级的验证用户权限:用户表.角色表.权限表.多表联合:https://blog.csdn.net/weixi ...
- 齐博x1齐博首创钩子的使用方法
齐博X1有两套钩子体系,第一套是基于TP思路设计的.跟外面的大同小异.现在重点讲一下第二套我们首创的使用方法. 首先说一下如何埋钩子,这个跟TP思路的钩子类似,就是在页面的任何地方加入如下代码即可如下 ...
- 10.异步mysql
python中操作mysql连接.操作.断开都是网络IO #安装支持异步aiomysql的模块 pip3 install aiomysql async def execute(): # 网络IO操作, ...
- .NET周报【10月第3期 2022-10-25】
国内文章 聊一聊被 .NET程序员 遗忘的 COM 组件 https://www.cnblogs.com/huangxincheng/p/16799234.html 将Windows编程中经典的COM ...
- 三十一、kubernetes网络介绍
Kubernetes 网络介绍 Service是Kubernetes的核心概念,通过创建Service,可以为一组具有相同功能的容器应用提供一个统一的入口地址,并且将请求负载分发到后端的各个容器应用上 ...