\(20pts\) 给 \(O(2^n)\) 枚举,\(60pts\) 是 \(O(n^2)\),先看看怎么做。计数题无非容斥和 \(dp\),不妨从 \(dp\) 入手。多项式复杂度的做法意味着无法将 \([1,n]\) 中是否能全部被表示直接存入状态,考虑将其转化为另一个充要条件,注意到:

  • \(\forall i\in [1,n]\),需要满足 \(S\) 中 \(\le i\) 的元素之和 \(\ge i\)。

证明:必要性显然,考虑使用数学归纳法证明其必要性。\(i=1,2\) 时显然,对于 \(i \ge 3\),假设找到最小的 \(x\) 使得 \(\le x\) 的值相加的和 \(\ge i\),设这个和为 \(s\),则有 \(s \lt 2i\)(否则由于 \(x \le i\) 则 \(x\) 不是最小),而又有 \(i \le s\),所以 \(s - i \lt i\),由于 \(\lt i\) 的可以被表示,所以 \(\gt s - i\) 的也可以,即 \(\ge i\) 的可以被表示,证毕。

于是进行 \(O(n^2)\) 的背包 \(dp\),可以获得 \(60pts\),具体做法不再赘述。

然而这个状态不太好优化。思考完 \(dp\),来考虑容斥(正难则反),即考虑不合法的情况有多少种。显然可以找到最小的 \(x\) 使得 \(S\) 中 \(\le x\) 的元素之和 \(\lt x\),将其方案数从总和内减去。又发现,若 \(\le x\) 的元素之和 \(\lt x\) 且 \(x\) 最小,则 \(\le x-1\) 的元素之和必定 \(=x-1\)。如此一来,不妨设 \(f_i\) 为 \(\le i\) 的元素之和为 \(i\) 并且任意 \(x \le i\) 都合法的方案数,状态数量被优化为线性。

那么,问题转化为如何快速求出 \(f_i\),同样可以容斥,用总方案数减去不合法的情况。总方案数就是 \(i\) 的整数拆分方案数,这个后面会讲。而不合法的方案数就是全局不合法方案的一部分,可以通过 \(f_{1\cdots i-1}\) 计算出。

现在考虑对一个数 \(n\) 进行整数拆分的方案数,一个 trivial 的想法是使用 \(O(n^2)\) 的背包。注意到背包的第二维值域为 \(n\),而由于每次第二维要加上 \(i\),使得增长速度很快,所以只会进行 \(\sqrt n\) 次第二维的增加操作,这给了我们优化的空间。

可以通过下图便于理解。行代表从小到大加入的不同的数,由于总方格数量为 \(n\),所以行数是 \(O(\sqrt n)\) 级别的。但如果按照一行一行地做就不免要枚举第一维加入的 \(i\) 以及第二维的总和,复杂度是 \(O(n^2)\)。换一种思路,一列一列地做,相当于对 \([1,\sqrt{2n}] \cap \mathbb{Z}\) 做类似完全背包,并且为了保证每行互不相同,就需要让加入的数是连续的,只需要在 \(dp\) 时多留心一下,就得到了 \(O(n\sqrt n)\) 计算整数拆分的算法。

考虑前面的 \(f_j\) 对后面 \(f_i\) 的贡献,根据 \(f_j\) 的定义,一定有 \(j+1\) 没法被表示,所以 \(j+(j+2) \le i\),同时要求 \([j+2,i]\cap S\) 的总和 \(s+j=i\)。类似于整数拆分,枚举新加入的列即可。如此一来,想要算出 \(f_i\) 就要求前面的 \(f_j\) 值已经确定。

考虑到 \(j \le \frac{i}{2}\),可以通过类似于分治的方法,先计算出 \(f_{1\cdots n/2}\),然后在 \(O(n \sqrt n)\) 的复杂度内贡献到 \(f_{n/2\cdots n}\) 中。总的时间复杂度为 \(T(n) = O(n \sqrt n) + T(n / 2) = O(n \sqrt n)\)。

代码如下:

int n, p, pw2[MAXN], f[MAXN], g[MAXN];
inline void add(int& x, int y) { x += y, x >= p && (x -= p); }
void solve(int n) {
if (n <= 1) return void(f[0] = 1);
solve(n >> 1);
for (int i = 0; i <= n; ++i) g[i] = 0;
for (int i = sqrt(n * 2); i >= 1; --i) {
for (int j = n; j >= i; --j) g[j] = g[j - i];
for (int j = 0; j + (j + 2) * i <= n; ++j) add(g[j + (j + 2) * i], f[j]);
for (int j = i; j <= n; ++j) add(g[j], g[j - i]);
}
for (int i = n / 2 + 1; i <= n; ++i) if (g[i]) add(f[i], p - g[i]);
}
signed main() {
read(n), read(p), pw2[0] = 1;
for (int i = 1; i <= n; ++i) pw2[i] = 2ll * pw2[i - 1] % p;
for (int i = sqrt(n * 2); i >= 1; --i) {
for (int j = n; j >= i; --j) f[j] = f[j - i];
add(f[i], 1);
for (int j = i; j <= n; ++j) add(f[j], f[j - i]);
}
solve(n);
int ans = pw2[n];
for (int i = 0; i < n; ++i)
add(ans, p - (ll)f[i] * pw2[n - i - 1] % p);
write(ans), putchar('\n');
return 0;
}

P8340 [AHOI2022] 山河重整的更多相关文章

  1. 关于名称重整(name mangling)、多态性的一些简单介绍

    在看GCC源码的时候看到mangles这个单词,于是google了一下. 在面向对象编程语言出现之前,如果你想要打印不同类型的数据,需要写多个方法,例如PrintInteger(int i),Prin ...

  2. [20190101]块内重整.txt

    [20190101]块内重整.txt --//我不知道用什么术语表达这样的情况,我仅仅一次开会对方这么讲,我现在也照用这个术语.--//当dml插入数据到数据块时,预留一定的空间(pctfree的百分 ...

  3. C++中的名字重整技术

    C++ 一直为人诟病之一的原因是他的二进制模块兼容性不好,即ABI(Application Binary Interface)问题.对于同一源代码,不同编译器,甚至同一编译器不同版本都不兼容,其编译出 ...

  4. [译]GLUT教程 - 重整子窗体

    Lighthouse3d.com >> GLUT Tutorial >> Subwindows >> Reshape Subwindows 重整函数的回调需要处理两 ...

  5. 启动组织重整 Marvell追求创新文化

    最近接任Marvell技术长的Neil Kim正是该公司亟需的人才——他在今年四月加入后,预计将为Marvell带来正面.积极的改革契机,有机会让该公司彻底改头换面... 迈威尔科技(Marvell) ...

  6. 重整ADO.NET连接池相关资料

    https://msdn.microsoft.com/zh-cn/library/system.data.sqlclient.sqlconnection.connectionstring(VS.80) ...

  7. 【20181027T3】山河令【DP套DP】

    原题 [错解] 一眼DP 哎好像能删成奇形怪状的 弃疗,主要是没时间了 [正解] 神仙DP 明显先设\(f(i,j)\)表示把\([i,j]\) 取完的最小代价 然后发现转移不了,因为可以拿很多块 但 ...

  8. JS数组去重整理合集

    1.利用splice var arr = [1,2,3,4,5,6,7,8,9,9,8,7,6,5,4,3,2,1]; function repeat(arr){ for(var i = 0;i< ...

  9. Python高级语法-私有属性-名字重整(4.7.1)

    @ 目录 1.说明 2.代码 关于作者 1.说明 使用__dict__魔法方法 可以看到所有的属性,包括公有的,私有的,保护的等等 不能调用的原因就是,解释器把名字属性给重组了 其实是可以访问到的 2 ...

随机推荐

  1. 代码随想录第四天| 24. 两两交换链表中的节点 、19.删除链表的倒数第N个节点 、160.链表相交、142.环形链表II

    今天链表致死量 第一题 public static class ListNode { int val; ListNode next; ListNode() {} ListNode(int val) { ...

  2. Docker Private Registry

    Docker Private Registry 目录 Docker Private Registry Docker Registry Docker Private Registry 使用docker- ...

  3. Dest0g3迎新赛misc部分解析

    ​ 目录 1. Pngenius 2. EasyEncode 3. 你知道js吗 4. StrangeTraffic 5. EasyWord 6.4096 7.python_jail 8. codeg ...

  4. nginx 通过IP访问项目

    项目新需求,因为是小范围使用的网站,所以不打算配域名,直接通过IP访问当前项目. 环境: LNMP 一键集成环境 当前IP指向的目录 :/home/wwwroot/default/ 但是我的项目.需要 ...

  5. shell实践

    shell实践 父子shell 父shell:我们在登录某个虚拟机控制器终端的时候(连接某一个linux虚拟机)时,默认启动的交互式shell,然后等待命令输入. ps命令参数,是否有横杠的参数作用是 ...

  6. Codeforces Round #817 (Div. 4)

    CF传送门 因为洛谷题库未更新,所以给出的题面都是CF的. 现场打真是太卡了(梯子挂了,codeforc.es也崩了),所以五六分钟才打开题目 \(qwq\) A. Spell Check 萌萌题,把 ...

  7. 查看服务器出口ip

    [root@iZap201hv2fcgry1alvbznZ ~]# curl cip.cc IP : xxx.xxx.xx.xx 地址 : 中国 浙江 绍兴 运营商 : 移动 数据二 : 浙江省绍兴市 ...

  8. 报错:com.mysql.jdbc.MysqlDataTruncation: Data truncation xxxx

    报错 Out of range value for column 'pk' at row 1:表的字段长度不够 Data too long for column 'ip' at row 1:表的字段长 ...

  9. Java:自定义排序与sort()函数

    自定义排序与Arrays.sort() 本篇题目来源:2022/11/13 Leetcode每日一题:https://leetcode.cn/problems/custom-sort-string 给 ...

  10. 第1章-Spring的模块与应用场景

    目录 一.Spring模块 1. 核心模块 2. AOP模块 3. 消息模块 4. 数据访问模块 5. Web模块 6. 测试模块 二.集成功能 1. 目标原则 2. 支持组件 三.应用场景 1. 典 ...