Saga 模式

Saga 最初出现在1987年Hector Garcaa-Molrna & Kenneth Salem发表的一篇名为《Sagas》的论文里。其核心思想是将长事务拆分为多个短事务,借助Saga事务协调器的协调,来保证要么所有操作都成功完成,要么运行相应的补偿事务以撤消先前完成的工作,从而维护多个服务之间的数据一致性。举例而言,假设有个在线购物网站,其后端服务划分为订单服务、支付服务和库存服务。那么一次下订单的Saga流程如下图所示:

在Saga模式中本地事务是Saga 参与者执行的工作单元,每个本地事务都会更新数据库并发布消息或事件以触发 Saga 中的下一个本地事务。如果本地事务失败,Saga 会执行一系列补偿事务,以撤消先前本地事务所做的更改。

对于Saga模式的实现又分为两种形式:

  1. 协同式:把Saga 的决策和执行顺序逻辑分布在Saga的每个参与方中,通过交换事件的方式进行流转。示例图如下所示:

  1. 编排式:把Saga的决策和执行顺序逻辑集中定义在一个Saga 编排器中。Saga 编排器发出命令式消息给各个Saga 参与方,指示这些参与方执行怎样的操作。

从上图可以看出,对于协同式Saga 存在一个致命的弊端,那就是存在循环依赖的问题,每个Saga参与方都需要订阅所有影响它们的事件,耦合性较高,且由于Saga 逻辑分散在各参与方,不便维护。相对而言,编排式Saga 则实现了关注点分离,协调逻辑集中在编排器中定义,Saga 参与者仅需实现供编排器调用的API 即可。

在.NET 中也有开箱即用的开源框架实现了编排式的Saga事务模型,也就是MassTransit Courier,接下来就来实际探索一番。

MassTransit Courier 简介

MassTransit Courier 是对Routing Slip(路由单) 模式的实现。该模式用于运行时动态指定消息处理步骤,解决不同消息可能有不同消息处理步骤的问题。实现机制是消息处理流程的开始,创建一个路由单,这个路由单定义消息的处理步骤,并附加到消息中,消息按路由单进行传输,每个处理步骤都会查看_路由单_并将消息传递到路由单中指定的下一个处理步骤。

在MassTransit Courier中是通过抽象IActivityRoutingSlip来实现了Routing Slip模式。通过按需有序组合一系列的Activity,得到一个用来限定消息处理顺序的Routing Slip。而每个Activity的具体抽象就是IActivityIExecuteActivity。二者的差别在于IActivity定义了ExecuteCompensate两个方法,而IExecuteActivitiy仅定义了Execute方法。其中Execute代表正向操作,Compensate代表反向补偿操作。用一个简单的下单流程:创建订单->扣减库存->支付订单举例而言,使用Courier的实现示意图如下所示:

基于Courier 实现编排式Saga事务

那具体如何使用MassTransit Courier来应用编排式Saga 模式呢,接下来就来创建解决方案来实现以上下单流程示例。

创建解决方案

依次创建以下项目,除共享类库项目外,均安装MassTransitMassTransit.RabbitMQNuGet包。

项目 项目名 项目类型
订单服务 MassTransit.CourierDemo.OrderService ASP.NET Core Web API
库存服务 MassTransit.CourierDemo.InventoryService Worker Service
支付服务 MassTransit.CourierDemo.PaymentService Worker Service
共享类库 MassTransit.CourierDemo.Shared Class Library

三个服务都添加扩展类MassTransitServiceExtensions,并在Program.cs类中调用services.AddMassTransitWithRabbitMq();注册服务。

using System.Reflection;
using MassTransit.CourierDemo.Shared.Models; namespace MassTransit.CourierDemo.InventoryService; public static class MassTransitServiceExtensions
{
public static IServiceCollection AddMassTransitWithRabbitMq(this IServiceCollection services)
{
return services.AddMassTransit(x =>
{
x.SetKebabCaseEndpointNameFormatter(); // By default, sagas are in-memory, but should be changed to a durable
// saga repository.
x.SetInMemorySagaRepositoryProvider(); var entryAssembly = Assembly.GetEntryAssembly();
x.AddConsumers(entryAssembly);
x.AddSagaStateMachines(entryAssembly);
x.AddSagas(entryAssembly);
x.AddActivities(entryAssembly);
x.UsingRabbitMq((context, busConfig) =>
{
busConfig.Host(
host: "localhost",
port: 5672,
virtualHost: "masstransit",
configure: hostConfig =>
{
hostConfig.Username("guest");
hostConfig.Password("guest");
}); busConfig.ConfigureEndpoints(context);
});
});
}
}

订单服务

订单服务作为下单流程的起点,需要承担构建RoutingSlip的职责,因此可以创建一个OrderRoutingSlipBuilder来构建RoutingSlip,代码如下:

using MassTransit.Courier.Contracts;
using MassTransit.CourierDemo.Shared.Models; namespace MassTransit.CourierDemo.OrderService;
public static class OrderRoutingSlipBuilder
{
public static RoutingSlip BuildOrderRoutingSlip(CreateOrderDto createOrderDto)
{
var createOrderAddress = new Uri("queue:create-order_execute");
var deduceStockAddress = new Uri("queue:deduce-stock_execute");
var payAddress = new Uri("queue:pay-order_execute");
var routingSlipBuilder = new RoutingSlipBuilder(Guid.NewGuid()); routingSlipBuilder.AddActivity(
name: "order-activity",
executeAddress: createOrderAddress,
arguments: createOrderDto);
routingSlipBuilder.AddActivity(name: "deduce-stock-activity", executeAddress: deduceStockAddress);
routingSlipBuilder.AddActivity(name: "pay-activity", executeAddress: payAddress); var routingSlip = routingSlipBuilder.Build();
return routingSlip;
}
}

从以上代码可知,构建一个路由单需要以下几步:

  1. 明确业务用例涉及的具体用例,本例中为:

    1. 创建订单:CreateOrder
    2. 扣减库存:DeduceStock
    3. 支付订单:PayOrder
  2. 根据用例名,按短横线隔开命名法(kebab-case)定义用例执行地址,格式为queue:<usecase>_execute,本例中为:
    1. 创建订单执行地址:queue:create-order_execute
    2. 扣减库存执行地址:queue:deduce-stock_execute
    3. 支付订单执行地址:queue:pay-order_execute
  3. 创建路由单:
    1. 通过RoutingSlipBuilder(Guid.NewGuid())创建路由单构建器实例
    2. 根据业务用例流转顺序,调用AddActivity()方法依次添加Activity用来执行用例,因为第一个创建订单用例需要入口参数,因此传入了一个CreateOrderDtoDTO(Data Transfer Object)对象
    3. 调用Build()方法创建路由单

对于本例而言,由于下单流程是固定流程,因此以上路由单的构建也是按业务用例进行定义的。而路由单的强大之处在于,可以按需动态组装。在实际电商场景中,有些订单是无需执行库存扣减的,比如充值订单,对于这种情况,仅需在创建路由单时判断若为充值订单则不添加扣减库存的Activity即可。

对于订单服务必然要承担创建订单的职责,定义CreateOrderActivity(Activity的命名要与上面定义的用例对应)如下,其中OrderRepository为一个静态订单仓储类:

public class CreateOrderActivity : IActivity<CreateOrderDto, CreateOrderLog>
{
private readonly ILogger<CreateOrderActivity> _logger;
public CreateOrderActivity(ILogger<CreateOrderActivity> logger)
{
_logger = logger;
} // 订单创建
public async Task<ExecutionResult> Execute(ExecuteContext<CreateOrderDto> context)
{
var order = await CreateOrder(context.Arguments);
var log = new CreateOrderLog(order.OrderId, order.CreatedTime);
_logger.LogInformation($"Order [{order.OrderId}] created successfully!");
return context.CompletedWithVariables(log, new {order.OrderId});
} private async Task<Order> CreateOrder(CreateOrderDto orderDto)
{
var shoppingItems =
orderDto.ShoppingCartItems.Select(item => new ShoppingCartItem(item.SkuId, item.Price, item.Qty));
var order = new Order(orderDto.CustomerId).NewOrder(shoppingItems.ToArray());
await OrderRepository.Insert(order);
return order;
} // 订单补偿(取消订单)
public async Task<CompensationResult> Compensate(CompensateContext<CreateOrderLog> context)
{
var order = await OrderRepository.Get(context.Log.OrderId);
order.CancelOrder();
var exception = context.Message.ActivityExceptions.FirstOrDefault();
_logger.LogWarning(
$"Order [{order.OrderId} has been canceled duo to {exception.ExceptionInfo.Message}!");
return context.Compensated();
}
}

从以上代码可知,实现一个Activity,需要以下步骤:

  1. 定义实现IActivity<in TArguments, in TLog>需要的参数类:

    1. TArguments对应正向执行入口参数,会在Execute方法中使用,本例中为CreateOrderDto,用于订单创建。
    2. TLog对应反向补偿参数,会在Compensate方法中使用,本例中为CreateOrderLog,用于订单取消。
  2. 实现IActivity<in TArguments, in TLog>接口中的Execute方法:
    1. 具体用例的实现,本例中对应订单创建逻辑
    2. 创建TLog反向补偿参数实例,以便业务异常时能够按需补偿
    3. 返回Activity执行结果,并按需传递参数至下一个Activity,本例仅传递订单Id至下一流程。
  3. 实现IActivity<in TArguments, in TLog>接口中的Compensate方法:
    1. 具体反向补偿逻辑的实现,本例中对应取消订单
    2. 返回反向补偿执行结果

订单服务的最后一步就是定义WebApi来接收创建订单请求,为简要起便创建OrderController如下:

using MassTransit.CourierDemo.Shared.Models;
using Microsoft.AspNetCore.Mvc; namespace MassTransit.CourierDemo.OrderService.Controllers; [ApiController]
[Route("[controller]")]
public class OrderController : ControllerBase
{
private readonly IBus _bus;
public OrderController(IBus bus)
{
_bus = bus;
} [HttpPost]
public async Task<IActionResult> CreateOrder(CreateOrderDto createOrderDto)
{
// 创建订单路由单
var orderRoutingSlip = OrderRoutingSlipBuilder.BuildOrderRoutingSlip(createOrderDto);
// 执行订单流程
await _bus.Execute(orderRoutingSlip); return Ok();
}
}

库存服务

库存服务在整个下单流程的职责主要是库存的扣减和返还,但由于从上游用例仅传递了OrderId参数到库存扣减Activity,因此在库存服务需要根据OrderId 去请求订单服务获取要扣减的库存项才能执行扣减逻辑。而这可以通过使用MassTransit的Reqeust/Response 模式来实现,具体步骤如下:

  1. 在共享类库MassTransit.CourierDemo.Shared中定义IOrderItemsRequestIOrderItemsResponse
namespace MassTransit.CourierDemo.Shared.Models;

public interface IOrderItemsRequest
{
public string OrderId { get; }
}
public interface IOrderItemsResponse
{
public List<DeduceStockItem> DeduceStockItems { get; set; }
public string OrderId { get; set; }
}
  1. 在订单服务中实现IConsumer<IOrderItemsRequest:
using MassTransit.CourierDemo.OrderService.Repositories;
using MassTransit.CourierDemo.Shared.Models; namespace MassTransit.CourierDemo.OrderService.Consumers; public class OrderItemsRequestConsumer : IConsumer<IOrderItemsRequest>
{
public async Task Consume(ConsumeContext<IOrderItemsRequest> context)
{
var order = await OrderRepository.Get(context.Message.OrderId);
await context.RespondAsync<IOrderItemsResponse>(new
{
order.OrderId,
DeduceStockItems = order.OrderItems.Select(
item => new DeduceStockItem(item.SkuId, item.Qty)).ToList()
});
}
}
  1. 在库存服务注册service.AddMassTransit()中注册x.AddRequestClient<IOrderItemsRequest>();
using System.Reflection;
using MassTransit.CourierDemo.Shared.Models; namespace MassTransit.CourierDemo.InventoryService; public static class MassTransitServiceExtensions
{
public static IServiceCollection AddMassTransitWithRabbitMq(this IServiceCollection services)
{
return services.AddMassTransit(x =>
{
//...
x.AddRequestClient<IOrderItemsRequest>();
//...
});
}
}
  1. 在需要的类中注册IRequestClient<OrderItemsRequest>服务即可。

最终扣减库存的Activity实现如下:

public class DeduceStockActivity : IActivity<DeduceOrderStockDto, DeduceStockLog>
{
private readonly IRequestClient<IOrderItemsRequest> _orderItemsRequestClient;
private readonly ILogger<DeduceStockActivity> _logger; public DeduceStockActivity(IRequestClient<IOrderItemsRequest> orderItemsRequestClient,
ILogger<DeduceStockActivity> logger)
{
_orderItemsRequestClient = orderItemsRequestClient;
_logger = logger;
}
// 库存扣减
public async Task<ExecutionResult> Execute(ExecuteContext<DeduceOrderStockDto> context)
{
var deduceStockDto = context.Arguments;
var orderResponse =
await _orderItemsRequestClient.GetResponse<IOrderItemsResponse>(new { deduceStockDto.OrderId }); if (!CheckStock(orderResponse.Message.DeduceStockItems))
return context.Faulted(new Exception("insufficient stock")); DeduceStocks(orderResponse.Message.DeduceStockItems); var log = new DeduceStockLog(deduceStockDto.OrderId, orderResponse.Message.DeduceStockItems); _logger.LogInformation($"Inventory has been deducted for order [{deduceStockDto.OrderId}]!");
return context.CompletedWithVariables(log, new { log.OrderId });
}
// 库存检查
private bool CheckStock(List<DeduceStockItem> deduceItems)
{
foreach (var stockItem in deduceItems)
{
if (InventoryRepository.GetStock(stockItem.SkuId) < stockItem.Qty) return false;
} return true;
} private void DeduceStocks(List<DeduceStockItem> deduceItems)
{
foreach (var stockItem in deduceItems)
{
InventoryRepository.TryDeduceStock(stockItem.SkuId, stockItem.Qty);
}
}
//库存补偿
public Task<CompensationResult> Compensate(CompensateContext<DeduceStockLog> context)
{
foreach (var deduceStockItem in context.Log.DeduceStockItems)
{
InventoryRepository.ReturnStock(deduceStockItem.SkuId, deduceStockItem.Qty);
} _logger.LogWarning($"Inventory has been returned for order [{context.Log.OrderId}]!");
return Task.FromResult(context.Compensated());
}
}

支付服务

对于下单流程的支付用例来说,要么成功要么失败,并不需要像以上两个服务一样定义补偿逻辑,因此仅需要实现IExecuteActivity<in TArguments>接口即可,该接口仅定义了Execute接口方法,具体PayOrderActivity实现如下:

using MassTransit.CourierDemo.Shared;
using MassTransit.CourierDemo.Shared.Models; namespace MassTransit.CourierDemo.PaymentService.Activities; public class PayOrderActivity : IExecuteActivity<PayDto>
{
private readonly IBus _bus;
private readonly IRequestClient<IOrderAmountRequest> _client;
private readonly ILogger<PayOrderActivity> _logger; public PayOrderActivity(IBus bus,IRequestClient<IOrderAmountRequest> client,ILogger<PayOrderActivity> logger)
{
_bus = bus;
_client = client;
_logger = logger;
} public async Task<ExecutionResult> Execute(ExecuteContext<PayDto> context)
{
var response = await _client.GetResponse<IOrderAmountResponse>(new { context.Arguments.OrderId });
// do payment... if (response.Message.Amount % 2 == 0)
{
_logger.LogInformation($"Order [{context.Arguments.OrderId}] paid successfully!");
return context.Completed();
}
_logger.LogWarning($"Order [{context.Arguments.OrderId}] payment failed!");
return context.Faulted(new Exception("Order payment failed due to insufficient account balance."));
}
}

以上代码中也使用了MassTransit的Reqeust/Response 模式来获取订单要支付的余额,并根据订单金额是否为偶数来模拟支付失败。

运行结果

启动三个项目,并在Swagger中发起订单创建请求,如下图所示:

由于订单总额为奇数,因此支付会失败,最终控制台输出如下图所示:



打开RabbitMQ后台,可以看见MassTransit按照约定创建了以下队列用于服务间的消息传递:

但你肯定好奇本文中使用的路由单具体是怎样实现的?简单,停掉库存服务,再发送一个订单创建请求,然后从队列获取未消费的消息即可解开谜底。以下是抓取的一条消息示例:

{
"messageId": "ac5d0000-e330-482a-b7bc-08dada7915ab",
"requestId": null,
"correlationId": "ce8af31b-a65c-4dfa-915c-4ae5174820f9",
"conversationId": "ac5d0000-e330-482a-28a5-08dada7915ad",
"initiatorId": null,
"sourceAddress": "rabbitmq://localhost/masstransit/THINKPAD_MassTransitCourierDemoOrderService_bus_itqoyy8dgbrniyeobdppw6engn?temporary=true",
"destinationAddress": "rabbitmq://localhost/masstransit/deduce-stock_execute?bind=true",
"responseAddress": null,
"faultAddress": null,
"messageType": [
"urn:message:MassTransit.Courier.Contracts:RoutingSlip"
],
"message": {
"trackingNumber": "ce8af31b-a65c-4dfa-915c-4ae5174820f9",
"createTimestamp": "2022-12-10T06:38:01.5452768Z",
"itinerary": [
{
"name": "deduce-stock-activity",
"address": "queue:deduce-stock_execute",
"arguments": {}
},
{
"name": "pay-activity",
"address": "queue:pay-order_execute",
"arguments": {}
}
],
"activityLogs": [
{
"executionId": "ac5d0000-e330-482a-7cb2-08dada7915bf",
"name": "order-activity",
"timestamp": "2022-12-10T06:38:01.7115314Z",
"duration": "00:00:00.0183136",
"host": {
"machineName": "THINKPAD",
"processName": "MassTransit.CourierDemo.OrderService",
"processId": 23980,
"assembly": "MassTransit.CourierDemo.OrderService",
"assemblyVersion": "1.0.0.0",
"frameworkVersion": "6.0.9",
"massTransitVersion": "8.0.7.0",
"operatingSystemVersion": "Microsoft Windows NT 10.0.19044.0"
}
}
],
"compensateLogs": [
{
"executionId": "ac5d0000-e330-482a-7cb2-08dada7915bf",
"address": "rabbitmq://localhost/masstransit/create-order_compensate",
"data": {
"orderId": "8c47a1db-cde3-43bb-a809-644f36e7ca99",
"createdTime": "2022-12-10T14:38:01.7272895+08:00"
}
}
],
"variables": {
"orderId": "8c47a1db-cde3-43bb-a809-644f36e7ca99"
},
"activityExceptions": [],
"subscriptions": []
},
"expirationTime": null,
"sentTime": "2022-12-10T06:38:01.774618Z",
"headers": {
"MT-Forwarder-Address": "rabbitmq://localhost/masstransit/create-order_execute"
}
}

从中可以看到信封中的message.itinerary定义了消息的行程,从而确保消息按照定义的流程进行流转。同时通过message.compensateLogs来指引若失败将如何回滚。

总结

通过以上示例的讲解,相信了解到MassTransit Courier的强大之处。Courier中的RoutingSlip充当着事务编排器的角色,将Saga的决策和执行顺序逻辑封装在消息体内随着消息进行流转,从而确保各服务仅需关注自己的业务逻辑,而无需关心事务的流转,真正实现了关注点分离。

MassTransit 知多少 | 基于MassTransit Courier实现Saga 编排式分布式事务的更多相关文章

  1. 如何选择分布式事务形态(TCC,SAGA,2PC,补偿,基于消息最终一致性等等)

    各种形态的分布式事务 分布式事务有多种主流形态,包括: 基于消息实现的分布式事务 基于补偿实现的分布式事务(gts/fescar自动补偿的形式) 基于TCC实现的分布式事务 基于SAGA实现的分布式事 ...

  2. 如何选择分布式事务形态(TCC,SAGA,2PC,基于消息最终一致性等等)

    各种形态的分布式事务 分布式事务有多种主流形态,包括: 基于消息实现的分布式事务 基于补偿实现的分布式事务 基于TCC实现的分布式事务 基于SAGA实现的分布式事务 基于2PC实现的分布式事务 这些形 ...

  3. AspNetCore&MassTransit Courier实现分布式事务

    在之前的一篇博文中,CAP框架可以方便我们实现非实时.异步场景下的最终一致性,而有些用例总是无法避免的需要在实时.同步场景下进行,可以借助Saga事务来解决这一困扰.在一些博文和仓库中也搜寻到了.Ne ...

  4. .NET Core微服务之基于MassTransit实现数据最终一致性(Part 1)

    Tip: 此篇已加入.NET Core微服务基础系列文章索引 一.预备知识:数据一致性 关于数据一致性的文章,园子里已经有很多了,如果你还不了解,那么可以通过以下的几篇文章去快速地了解了解,有个感性认 ...

  5. 白瑜庆:知乎基于Kubernetes的kafka平台的设计和实现

    欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文首发在云+社区,未经许可,不得转载. 自我介绍 我是知乎的技术中台工程师,现在是负责知乎的存储相关组件.我的分享主要基于三个,一个是简单 ...

  6. 通过Dapr实现一个简单的基于.net的微服务电商系统(十九)——分布式事务之Saga模式

    在之前的系列文章中聊过分布式事务的一种实现方案,即通过在集群中暴露actor服务来实现分布式事务的本地原子化.但是actor服务本身有其特殊性,场景上并不通用.所以今天来讲讲分布式事务实现方案之sag ...

  7. saga+.net core 分布式事务处理

    Apache ServiceComb Saga 是一个微服务应用的数据最终一致性解决方案 中文官方地址:https://github.com/apache/servicecomb-saga/blob/ ...

  8. 分布式事务:Saga模式

    1 Saga相关概念 1987年普林斯顿大学的Hector Garcia-Molina和Kenneth Salem发表了一篇Paper Sagas,讲述的是如何处理long lived transac ...

  9. 架构设计 | 基于Seata中间件,微服务模式下事务管理

    源码地址:GitHub·点这里 || GitEE·点这里 一.Seata简介 1.Seata组件 Seata是一款开源的分布式事务解决方案,致力于提供高性能和简单易用的分布式事务服务.Seata将为用 ...

  10. 微服务痛点-基于Dubbo + Seata的分布式事务(AT)模式

    前言 Seata 是一款开源的分布式事务解决方案,致力于提供高性能和简单易用的分布式事务服务.Seata 将为用户提供了 AT.TCC.SAGA 和 XA 事务模式,为用户打造一站式的分布式解决方案. ...

随机推荐

  1. P7476 苦涩 题解

    Link 一道很好的复杂度均摊题目. 只需要考虑删除操作时的时间复杂度.保证复杂度的重点之一是精确定位到所有包含最大值的区间,即不去碰多余的区间.每次删除操作会删除若干个整个区间,以及至多两个区间被删 ...

  2. Git使用与心得体会

    Git使用与心得体会 一.闲聊 闲暇时间学一下Git,也算是不用在网页端操作github了 二.Git相关 集中式与分布式 Git是一个分布式的版本控制系统,而传统的SVN则属于集中式 集中式与分布式 ...

  3. 关于Azure-AzCopy在Linux环境下的安装

    关于Azure云中有一个AzCopy工具,它 是一个命令行实用工具,支持各种操作系统 AzCopy可以用于向存储帐户复制上传文件,也可以从存储账号下载文件到本地 这里笔者主要记录一下在Linux-x8 ...

  4. 聊聊Linux中CPU上下文切换

    目录 什么是CPU上下文 CPU上下文切换 上一任务的CPU上下文保存在哪? 进程上下文切换 内核空间和用户空间 top命令查看CPU资源 系统调用 进程上下文切换 和 系统调用的区别? 进程切换的常 ...

  5. Gson的使用与理解

    当今社会下,前后端分离,不同系统的信息交互,消息队列的数据传递,微服务的不同服务之间的数据处理,越来越多地方用到了序列化.序列化作为不同系统不同服务之间的数据桥梁.那么方便快捷的序列化工具还是必要的. ...

  6. qiankun+vue,为什么我的子应用的子路由老是跳404?这么解决

    主要解决子应用内部跳转路由时,跳到404页的问题 你能搜这个,我姑且认为你基本配置已经好了,而且主跳子的一级路由是正常的,请往下看 忘说了,我的主应用和子应用都是Vue 主应用跳子应用都正常,为什么子 ...

  7. Python凯撒密码加解密

    #凯撒密码第一个版本 #加密 pxpt=input("请输入明文文本:") for p in pxpt: if 'a'<=p<='z': print(chr(ord(' ...

  8. C++之值传递&指针传递&引用传递详解

    C++之值传递&指针传递&引用传递详解 目录 C++之值传递&指针传递&引用传递详解 1.函数基础 2.值传递 3.指针传递 4.引用传递 1.函数基础 一个函数由以下 ...

  9. Python爬虫urllib库的使用

    urllib 在Python2中,有urllib和urllib2两个库实现请求发送,在Python3中,统一为urllib,是Python内置的HTTP请求库 request:最基本的HTTP请求模块 ...

  10. SQL--Case When.. Then.. end的使用

    Case  When.. Then.. end的使用场景 当字段有不同的值,根据不同的值表示不同的内容 use [数据库名] go if exists( select * from sys.views ...