论文信息

论文标题:Adversarial Discriminative Domain Adaptation
论文作者:Eric Tzeng, Judy Hoffman, Kate Saenko, Trevor Darrell
论文来源:CVPR 2017
论文地址:download 
论文代码:download
引用次数:3257

1 简介

  本文主要探讨的是:源域和目标域特征提取器共享参数的必要性。

  源域和目标域特征提取器共享参数的代表——DANN。

2 对抗域适应

  标准监督损失训练源数据:

    $\underset{M_{s}, C}{\text{min}} \quad \mathcal{L}_{\mathrm{cls}}\left(\mathbf{X}_{s}, Y_{t}\right)=  \mathbb{E}_{\left(\mathbf{x}_{s}, y_{s}\right) \sim\left(\mathbf{X}_{s}, Y_{t}\right)}-\sum\limits _{k=1}^{K} \mathbb{1}_{\left[k=y_{s}\right]} \log C\left(M_{s}\left(\mathbf{x}_{s}\right)\right)\quad\quad(1)$

  域对抗:首先使得域鉴别器分类准确,即最小化交叉熵损失 $\mathcal{L}_{\operatorname{adv}_{D}}\left(\mathbf{X}_{s}, \mathbf{X}_{t}, M_{s}, M_{t}\right)$:

    $\begin{array}{l}\mathcal{L}_{\text {adv }_{D}}\left(\mathbf{X}_{s}, \mathbf{X}_{t}, M_{s}, M_{t}\right)= -\mathbb{E}_{\mathbf{x}_{s} \sim \mathbf{X}_{s}}\left[\log D\left(M_{s}\left(\mathbf{x}_{s}\right)\right)\right] -\mathbb{E}_{\mathbf{x}_{t} \sim \mathbf{X}_{t}}\left[\log \left(1-D\left(M_{t}\left(\mathbf{x}_{t}\right)\right)\right)\right]\end{array} \quad\quad(2)$

  其次,源映射和目标映射根据一个受约束的对抗性目标进行优化(使得域鉴别器损失最大)。

  域对抗技术的通用公式如下:

    $\begin{array}{l}\underset{D}{\text{min}}  & \mathcal{L}_{\mathrm{adv}_{D}}\left(\mathbf{X}_{s}, \mathbf{X}_{t}, M_{s}, M_{t}\right) \\\underset{M_{s}, M_{t}}{\text{min}}  & \mathcal{L}_{\mathrm{adv}_{M}}\left(\mathbf{X}_{s}, \mathbf{X}_{t}, D\right) \\\text { s.t. } & \psi\left(M_{s}, M_{t}\right)\end{array}\quad\quad(3)$

2.1 源域和目标域映射

  

  归结为三个问题:

    • 选择生成式模型还是判别式模型?
    • 针对源域与目标域的映射是否共享参数?
    • 损失函数如何定义?

2.2 Adversarial losses

  回顾DANN 的训练方式:DANN 的梯度反转层优化映射,使鉴别器损失最大化

    $\mathcal{L}_{\text {adv }_{M}}=-\mathcal{L}_{\mathrm{adv}_{D}}\quad\quad(6)$

  这个目标可能有问题,因为在训练的早期,鉴别器快速收敛,导致梯度消失。

  当训练 GANs 时,而不是直接使用 minimax,通常是用带有倒置标签[10]的标准损失函数来训

  回顾 GAN :GAN将优化分为两个独立的目标,一个用于生成器,另一个用于鉴别器。训练生成器的时候,其中 $\mathcal{L}_{\mathrm{adv}_{D}}$ 保持不变,但 $\mathcal{L}_{\mathrm{adv}_{M}}$ 变成:

    $\mathcal{L}_{\mathrm{adv}_{M}}\left(\mathbf{X}_{s}, \mathbf{X}_{t}, D\right)=-\mathbb{E}_{\mathbf{x}_{t} \sim \mathbf{X}_{t}}\left[\log D\left(M_{t}\left(\mathbf{x}_{t}\right)\right)\right] \quad\quad(7)$

  Note:$\mathbf{x}_{t}$ 代表噪声数据,这里是使得噪声数据尽可能迷惑鉴别器。

adversarial_loss = torch.nn.BCELoss()  # 损失函数(二分类交叉熵损失)
generator = Generator() #生成器
discriminator = Discriminator() #鉴别器 optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2)) # 生成器优化器
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2)) # 鉴别器优化器 for epoch in range(opt.n_epochs):
for i, (imgs, _) in enumerate(dataloader):
# Adversarial ground truths
valid = Variable(Tensor(imgs.size(0), 1).fill_(1.0), requires_grad=False) #torch.Size([64, 1])
fake = Variable(Tensor(imgs.size(0), 1).fill_(0.0), requires_grad=False) #torch.Size([64, 1])
real_imgs = Variable(imgs.type(Tensor)) #torch.Size([64, 1, 28, 28]) 真实数据 # ----------------------> 训练生成器 [生成器使用噪声数据,使得其尽可能为真,迷惑鉴别器]
optimizer_G.zero_grad()
z = Variable(Tensor(np.random.normal(0, 1, (imgs.shape[0], opt.latent_dim)))) #torch.Size([64, 100])
gen_imgs = generator(z) #torch.Size([64, 1, 28, 28])
g_loss = adversarial_loss(discriminator(gen_imgs), valid)
g_loss.backward()
optimizer_G.step() # ----------------------> 训练鉴别器 [ 尽可能将真实数据和噪声数据区分开]
optimizer_D.zero_grad()
real_loss = adversarial_loss(discriminator(real_imgs), valid)
fake_loss = adversarial_loss(discriminator(gen_imgs.detach()), fake)
d_loss = (real_loss + fake_loss) / 2
d_loss.backward()
optimizer_D.step()

GAN code

  本文采用的方法类似于  GAN 。

3 对抗性域适应

  与之前方法不同:

  

  本文方法:

  

  首先:Pretrain ,使用源域训练一个分类器;[ 公式 9 第一个子公式]

  其次:Adversarial Adaption

    1. :使用源域和目标域数据,训练一个域鉴别器 Discriminator ,是的鉴别器尽可能区分源域和目标域数据 ;[ 公式 9 第二个子公式]  
    2. :使用目标域数据,训练目标域特征提取器,尽可能使得域鉴别器区分不出目标域样本;[ 公式 9 第三个子公式]  

  最后:Testing,在目标域上做 Eval;

  ADDA对应于以下无约束优化:

    $\begin{array}{l}\underset{M_{s}, C}{\text{min}} \quad \mathcal{L}_{\mathrm{cls}}\left(\mathbf{X}_{s}, Y_{s}\right) &=&-\mathbb{E}_{\left(\mathbf{x}_{s}, y_{s}\right) \sim\left(\mathbf{X}_{s}, Y_{s}\right)} \sum_{k=1}^{K} \mathbb{1}_{\left[k=y_{s}\right]} \log C\left(M_{s}\left(\mathbf{x}_{s}\right)\right) \\\underset{D}{\text{min}}  \quad\mathcal{L}_{\text {adv }_{D}}\left(\mathbf{X}_{s}, \mathbf{X}_{t}, M_{s}, M_{t}\right)&=& -\mathbb{E}_{\mathbf{x}_{s} \sim \mathbf{X}_{s}}\left[\log D\left(M_{s}\left(\mathbf{x}_{s}\right)\right)\right] \text { - } \mathbb{E}_{\mathbf{x}_{t} \sim \mathbf{X}_{t}}\left[\log \left(1-D\left(M_{t}\left(\mathbf{x}_{t}\right)\right)\right)\right] \\\underset{M_{t}}{\text{min}}  \quad \mathcal{L}_{\operatorname{adv}_{M}}\left(\mathbf{X}_{s}, \mathbf{X}_{t}, D\right)&=& -\mathbb{E}_{\mathbf{x}_{t} \sim \mathbf{X}_{t}}\left[\log D\left(M_{t}\left(\mathbf{x}_{t}\right)\right)\right] \\\end{array} \quad\quad(9)$

    tgt_encoder.train()
discriminator.train() # setup criterion and optimizer
criterion = nn.CrossEntropyLoss()
optimizer_tgt = optim.Adam(tgt_encoder.parameters(),lr=params.c_learning_rate,betas=(params.beta1, params.beta2))
optimizer_discriminator = optim.Adam(discriminator.parameters(),lr=params.d_learning_rate,betas=(params.beta1, params.beta2))
len_data_loader = min(len(src_data_loader), len(tgt_data_loader)) #149 for epoch in range(params.num_epochs):
# zip source and target data pair
data_zip = enumerate(zip(src_data_loader, tgt_data_loader))
for step, ((images_src, _), (images_tgt, _)) in data_zip:
# 2.1 训练域鉴别器,使得域鉴别器尽可能的准确
images_src = make_variable(images_src)
images_tgt = make_variable(images_tgt)
discriminator.zero_grad()
feat_src,feat_tgt = src_encoder(images_src) ,tgt_encoder(images_tgt) # 源域特征提取 # 目标域特征提取
feat_concat = torch.cat((feat_src, feat_tgt), 0)
pred_concat = discriminator(feat_concat.detach()) # 域分类结果 label_src = make_variable(torch.ones(feat_src.size(0)).long()) #假设源域的标签为 1
label_tgt = make_variable(torch.zeros(feat_tgt.size(0)).long()) #假设目标域域的标签为 0
label_concat = torch.cat((label_src, label_tgt), 0) loss_critic = criterion(pred_concat, label_concat)
loss_critic.backward()
optimizer_discriminator.step() # 域鉴别器优化 pred_cls = torch.squeeze(pred_concat.max(1)[1])
acc = (pred_cls == label_concat).float().mean() # 2.2 train target encoder # 使得目标域特征生成器,尽可能使得域鉴别器区分不出源域和目标域样本
optimizer_discriminator.zero_grad()
optimizer_tgt.zero_grad()
feat_tgt = tgt_encoder(images_tgt)
pred_tgt = discriminator(feat_tgt)
label_tgt = make_variable(torch.ones(feat_tgt.size(0)).long()) #假设目标域域的标签为 1(错误标签),使得域鉴别器鉴别错误
loss_tgt = criterion(pred_tgt, label_tgt)
loss_tgt.backward()
optimizer_tgt.step() # 目标域 encoder 优化

ADDA Code

迁移学习(ADDA)《Adversarial Discriminative Domain Adaptation》的更多相关文章

  1. 【深度学习系列】迁移学习Transfer Learning

    在前面的文章中,我们通常是拿到一个任务,譬如图像分类.识别等,搜集好数据后就开始直接用模型进行训练,但是现实情况中,由于设备的局限性.时间的紧迫性等导致我们无法从头开始训练,迭代一两百万次来收敛模型, ...

  2. Domain adaptation:连接机器学习(Machine Learning)与迁移学习(Transfer Learning)

    domain adaptation(域适配)是一个连接机器学习(machine learning)与迁移学习(transfer learning)的新领域.这一问题的提出在于从原始问题(对应一个 so ...

  3. 迁移学习(Transformer),面试看这些就够了!(附代码)

    1. 什么是迁移学习 迁移学习(Transformer Learning)是一种机器学习方法,就是把为任务 A 开发的模型作为初始点,重新使用在为任务 B 开发模型的过程中.迁移学习是通过从已学习的相 ...

  4. 中文NER的那些事儿2. 多任务,对抗迁移学习详解&代码实现

    第一章我们简单了解了NER任务和基线模型Bert-Bilstm-CRF基线模型详解&代码实现,这一章按解决问题的方法来划分,我们聊聊多任务学习,和对抗迁移学习是如何优化实体识别中边界模糊,垂直 ...

  5. 论文阅读 | A Curriculum Domain Adaptation Approach to the Semantic Segmentation of Urban Scenes

    paper链接:https://arxiv.org/pdf/1812.09953.pdf code链接:https://github.com/YangZhang4065/AdaptationSeg 摘 ...

  6. 【论文笔记】Domain Adaptation via Transfer Component Analysis

    论文题目:<Domain Adaptation via Transfer Component Analysis> 论文作者:Sinno Jialin Pan, Ivor W. Tsang, ...

  7. 域适应(Domain adaptation)

    定义 在迁移学习中, 当源域和目标的数据分布不同 ,但两个任务相同时,这种 特殊 的迁移学习 叫做域适应 (Domain Adaptation). Domain adaptation有哪些实现手段呢? ...

  8. Deep Transfer Network: Unsupervised Domain Adaptation

    转自:http://blog.csdn.net/mao_xiao_feng/article/details/54426101 一.Domain adaptation 在开始介绍之前,首先我们需要知道D ...

  9. Domain Adaptation论文笔记

    领域自适应问题一般有两个域,一个是源域,一个是目标域,领域自适应可利用来自源域的带标签的数据(源域中有大量带标签的数据)来帮助学习目标域中的网络参数(目标域中很少甚至没有带标签的数据).领域自适应如今 ...

  10. 【迁移学习】2010-A Survey on Transfer Learning

    资源:http://www.cse.ust.hk/TL/ 简介: 一个例子: 关于照片的情感分析. 源:比如你之前已经搜集了大量N种类型物品的图片进行了大量的人工标记(label),耗费了巨大的人力物 ...

随机推荐

  1. 创建.NET程序Dump的几种姿势

    当一个应用程序运行的有问题时,生成一个Dump文件来调试它可能会很有用.在Windows.Linux或Azure上有许多方法可以生成转储文件. Windows平台 dotnet-dump (Windo ...

  2. jvm双亲委派机制详解

    双亲委派机制 ​ 记录一下JVM的双亲委派机制学习记录. 类加载器种类 ​ 当我们运行某一个java类的main方法时,首先需要由java虚拟机的类加载器将我们要执行的main方法所在的class文件 ...

  3. docker使用代理(in home)

    docker 使用 http http_proxy https://docs.docker.com/config/daemon/systemd/ # 代理 和 国内 镜像源 不要 同时使用,... # ...

  4. Dockerfile 跨阶段多阶段使用 ARG 命令

    若要想 Dockerfile 的 ARG 命令可以跨多个阶段使用,需要有以下几步: 先在文件最前面使用 ARG 命令定义 然后在每个阶段分别引用 ARG 命令使用 一个示范的 Dockerfile 文 ...

  5. mindxdl--common--logger.go

    // Copyright (c) 2021. Huawei Technologies Co., Ltd. All rights reserved.// Package common the contr ...

  6. KafkaOffsetMonitor:监控消费者和延迟的队列

    个人名片: 因为云计算成为了监控工程师‍ 个人博客:念舒_C.ying CSDN主页️:念舒_C.ying 目录 消费者组列表 消费组的topic列表 图中参数含义解释如下: topic的历史位置 O ...

  7. IDEA提交任务到spark standalone集群

    参考文章: 在idea里面怎么远程提交spark任务到yarn集群 代码 注意setJars,提交的代码,要提前打好包.否则会报找不到类的错误 个人理解就相当于运行的main方法是起了一个spark- ...

  8. 两行CSS让页面提升了近7倍渲染性能!

    前言 对于前端人员来讲,最令人头疼的应该就是页面性能了,当用户在访问一个页面时,总是希望它能够快速呈现在眼前并且是可交互状态.如果页面加载过慢,你的用户很可能会因此离你而去.所以页面性能对于前端开发者 ...

  9. 使用SunnyUI的datagridview常用代码(个人常用)

    1.窗体加载时初始化grid private void LayOut() { dgv.Font = new System.Drawing.Font("微软雅黑", 9F); dgv ...

  10. apktool回编译报错

    报错 error: No resource identifier found for attribute 'XXX' in package 'XXX' 解决 将xml文件中 "http:// ...