基于python的数学建模---最小二乘拟合
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import leastsq
from matplotlib.pylab import mpl mpl.rcParams['font.sans-serif'] = ['Microsoft YaHei'] # 指定默认字体
mpl.rcParams['axes.unicode_minus'] = False # 解决保存图像是负号'-'显示为方块的问题 # 计算以p为参数的直线与原始数据之间误差
def f(p):
k, b = p
return Y - (k * X + b) if __name__ == '__main__':
X = np.array([8.19, 2.72, 6.39, 8.71, 4.7, 2.66, 3.78])
Y = np.array([7.01, 2.78, 6.47, 6.71, 4.1, 4.23, 4.05])
# leastsq使得f的输出数组的平方和最小,参数初始值为[1,0]
r = leastsq(f, [1, 0]) # 数初始值可以随便设个合理的
k, b = r[0]
x = np.linspace(0, 10, 1000)
y = k * x + b # 画散点图,s是点的大小
plt.scatter(X, Y, s=100, alpha=1.0, marker='o', label=u'数据点')
# 话拟合曲线,linewidth是线宽
plt.plot(x, y, color='r', linewidth=2, linestyle="-", markersize=20, label=u'拟合曲线')
plt.xlabel('安培/A')
plt.ylabel('伏特/V')
plt.legend(loc=0, numpoints=1) # 显示点和线的说明
# plt.plot(X, Y)
plt.show() print('k = ', k)
print('b = ', b)
k = 0.6134953491930442
b = 1.794092543259387
- 下面是用anaconda写的
import numpy as np
import matplotlib.pyplot as plt np.set_printoptions(suppress=True) # 取消科学计数法 x = np.array([8.19,2.72,6.39,8.71,4.7,2.66,3.78])
y = np.array([7.01,2.78,6.47,6.71,4.1,4.23,4.05]) plt.figure()
plt.scatter(x,y)
plt.show()
from scipy.optimize import leastsq def error(p,x,y):
return p[0]*x + p[1] - y p0 = [2,2] #设置初始值 res = leastsq(error,p0,args=(x,y)) k,b = res[0]
print(k)
print(b)
0.6134953485739788
1.7940925393506084
x1 = np.linspace(0,9,1000)
y1 = k*x1+b
plt.scatter(x,y,color= 'orange',label = 'Sample Point')
plt.plot(x1,y1,color= 'red',label = 'Fitting Line')
plt.legend()
plt.show()
基于python的数学建模---最小二乘拟合的更多相关文章
- 使用Python scipy linprog 线性规划求最大值或最小值(使用Python学习数学建模笔记)
函数格式 scipy.optimize.linprog(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None, bounds=None, method='simp ...
- Python数学建模-01.新手必读
Python 完全可以满足数学建模的需要. Python 是数学建模的最佳选择之一,而且在其它工作中也无所不能. 『Python 数学建模 @ Youcans』带你从数模小白成为国赛达人. 1. 数学 ...
- Python小白的数学建模课-A1.国赛赛题类型分析
分析赛题类型,才能有的放矢. 评论区留下邮箱地址,送你国奖论文分析 『Python小白的数学建模课 @ Youcans』 带你从数模小白成为国赛达人. 1. 数模竞赛国赛 A题类型分析 年份 题目 要 ...
- Python小白的数学建模课-B5. 新冠疫情 SEIR模型
传染病的数学模型是数学建模中的典型问题,常见的传染病模型有 SI.SIR.SIRS.SEIR 模型. 考虑存在易感者.暴露者.患病者和康复者四类人群,适用于具有潜伏期.治愈后获得终身免疫的传染病. 本 ...
- Python小白的数学建模课-B6. 新冠疫情 SEIR 改进模型
传染病的数学模型是数学建模中的典型问题,常见的传染病模型有 SI.SIR.SIRS.SEIR 模型. SEIR 模型考虑存在易感者.暴露者.患病者和康复者四类人群,适用于具有潜伏期.治愈后获得终身免疫 ...
- Python小白的数学建模课-12.非线性规划
非线性规划是指目标函数或约束条件中包含非线性函数的规划问题,实际就是非线性最优化问题. 从线性规划到非线性规划,不仅是数学方法的差异,更是解决问题的思想方法的转变. 非线性规划问题没有统一的通用方法, ...
- Python数学建模-02.数据导入
数据导入是所有数模编程的第一步,比你想象的更重要. 先要学会一种未必最佳,但是通用.安全.简单.好学的方法. 『Python 数学建模 @ Youcans』带你从数模小白成为国赛达人. 1. 数据导入 ...
- Python小白的数学建模课-A3.12 个新冠疫情数模竞赛赛题与点评
新冠疫情深刻和全面地影响着社会和生活,已经成为数学建模竞赛的背景帝. 本文收集了与新冠疫情相关的的数学建模竞赛赛题,供大家参考,欢迎收藏关注. 『Python小白的数学建模课 @ Youcans』带你 ...
- Python小白的数学建模课-07 选址问题
选址问题是要选择设施位置使目标达到最优,是数模竞赛中的常见题型. 小白不一定要掌握所有的选址问题,但要能判断是哪一类问题,用哪个模型. 进一步学习 PuLP工具包中处理复杂问题的字典格式快捷建模方法. ...
- Python小白的数学建模课-09 微分方程模型
小白往往听到微分方程就觉得害怕,其实数学建模中的微分方程模型不仅没那么复杂,而且很容易写出高水平的数模论文. 本文介绍微分方程模型的建模与求解,通过常微分方程.常微分方程组.高阶常微分方程 3个案例手 ...
随机推荐
- Linux_etc-passwd文件总结
文件内容 ## # User Database # # Note that this file is consulted directly only when the system is runnin ...
- git merge和git rebase总结
dev分支 * da349ef (dev) e * 75350bc d * 63cbbb8 c * c6509a5 b * 13405af a 文件可能会发生冲突,需要解决一下 aaaaaaaaa b ...
- 【FAQ】接入华为应用内支付服务常见问题解答
HMS Core应用内支付服务(In-App Purchases,IAP)为应用提供便捷的应用内支付体验和简便的接入流程.开发者的应用集成IAP SDK后,调用IAP SDK接口,启动IAP收银台,即 ...
- maxHBLT的合并&初始化&时间复杂度分析
1. 定义 [extened binary tree] 扩充二叉树是有 external node (用来代替空子树, 也就是 nullptr) 的 binary tree. 对应地, 其他 node ...
- G&GH02 储存库创建/同步
注意事项与声明 平台: Windows 10 作者: JamesNULLiu 邮箱: jamesnulliu@outlook.com 博客: https://www.cnblogs.com/james ...
- 第四章:Django表单 - 4:表单的Widgets
不要将Widget与表单的fields字段混淆.表单字段负责验证输入并直接在模板中使用.而Widget负责渲染网页上HTML表单的输入元素和提取提交的原始数据.widget是字段的一个内在属性,用于定 ...
- .Net下的分布式唯一ID
分布式唯一ID,顾名思义,是指在全世界任何一台计算机上都不会重复的唯一Id. 在单机/单服务器/单数据库的小型应用中,不需要用到这类东西.但在高并发.海量数据.大型分布式应用中,这类却是构建整个系统的 ...
- 掌控(control) 方法记录
掌控(control) 题面描述 公元\(2044\)年,人类进入了宇宙纪元.L国有\(n\)个星球,分别编号为\(1\)到\(n\),每一星球上有一个球长.有些球长十分强大,可以管理或掌控其他星球的 ...
- EFCore (二)之 跟踪实体
核心 SaveChanges() "已分离"和"未改变"的实体,SaveChanges()忽略: "已添加"的实体,SaveChanges( ...
- Linux基础_6_文本编辑
vi i #编辑 ESC+:wq #保存退出 ESC+ZZ #保存退出 ESC+:q! #不保存退出 shift+z+q #不保存退出 dd #删除所在行 ESC+u #撤销dd误操作 :/字符串 # ...