描述


http://poj.org/problem?id=1065

木棍有重量 w 和长度 l 两种属性,要使 l 和 w 同时单调不降,否则切割机器就要停一次,问最少停多少次(开始时停一次).

Wooden Sticks
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 21277   Accepted: 9030

Description

There is a pile of n wooden sticks. The length and weight of each stick are known in advance. The sticks are to be processed by a woodworking machine in one by one fashion. It needs some time, called setup time, for the machine to prepare processing a stick. The setup times are associated with cleaning operations and changing tools and shapes in the machine. The setup times of the woodworking machine are given as follows:
(a) The setup time for the first wooden stick is 1 minute.

(b) Right after processing a stick of length l and weight w ,
the machine will need no setup time for a stick of length l' and
weight w' if l <= l' and w <= w'. Otherwise, it will need 1
minute for setup.

You are to find the minimum setup time to process a given pile of n
wooden sticks. For example, if you have five sticks whose pairs of
length and weight are ( 9 , 4 ) , ( 2 , 5 ) , ( 1 , 2 ) , ( 5 , 3 ) ,
and ( 4 , 1 ) , then the minimum setup time should be 2 minutes since
there is a sequence of pairs ( 4 , 1 ) , ( 5 , 3 ) , ( 9 , 4 ) , ( 1
, 2 ) , ( 2 , 5 ) .

Input

The
input consists of T test cases. The number of test cases (T) is
given in the first line of the input file. Each test case consists of
two lines: The first line has an integer n , 1 <= n <=
5000 , that represents the number of wooden sticks in the test
case, and the second line contains 2n positive integers l1 , w1
, l2 , w2 ,..., ln , wn , each of magnitude at most 10000 ,
where li and wi are the length and weight of the i th wooden
stick, respectively. The 2n integers are delimited by one or more
spaces.

Output

The output should contain the minimum setup time in minutes, one per line.

Sample Input

3
5
4 9 5 2 2 1 3 5 1 4
3
2 2 1 1 2 2
3
1 3 2 2 3 1

Sample Output

2
1
3

Source

分析


神原理...

要求最少停多少次,就是要求单调不降的子序列的个数 x 最多为多少(每次停完都是一个单调不降的子序列),问题转化为求 x 的最小值.

我们现将木棍按照其中一种属性升序(不降)排序,这时另一种属性的最长下降子序列的长度记为 L .可以证明 x >=L.(鸽笼原理).

详细题解:

http://www.hankcs.com/program/cpp/poj-1065-wooden-sticks.html

注意:

1.二分的边界.在找满足 a [ k ] <= -1 的 k 的最小值时,可能 dp 数组中已经没有 -1 了,也就是 n 个位置全部被占满了,也就是整个序列就是一个下降序列,此时会找到 n 的位置,再 -1 答案就错误了,所以开始的时候将 1 ~ n + 1 都赋为 -1 ,之后 dp 时查找在 1 ~ n 查找,因为 dp 结束之前最多是 n - 1 个,不会把 dp 数组填满,数组中一定还有 -1 ,就一定存在满足 a [ k ] <= v (v>0) 的 k ,计算总长度时在 1~n+1 查找,确保有满足 a [ k ] <= -1 的 k .

 #include<cstdio>
#include<algorithm>
#define read(a) a=getnum()
#define for1(i,a,n) for(int i=(a);i<=(n);i++)
using namespace std; const int maxn=;
struct node {int l,w;}wood[maxn];
int q,n;
int dp[maxn]; inline int getnum(){ int r=,k=;char c;for(c=getchar();c<''||c>'';c=getchar()) if(c=='-') k=-;for(;c>=''&&c<='';c=getchar()) r=r*+c-''; return r*k; } bool comp(node x,node y) { return x.l<y.l; } int bsearch(int l,int r,int v)
{
while(l<r)
{
int m=l+(r-l)/;
if(dp[m]<=v) r=m;
else l=m+;
}
return l;
} void solve()
{
sort(wood+,wood+n+,comp);
for1(i,,n+) dp[i]=-;
for1(i,,n)
{
int idx=bsearch(,n,wood[i].w);
dp[idx]=wood[i].w;
}
int ans=bsearch(,n+,-)-;
printf("%d\n",ans);
} void init()
{
read(q);
while(q--)
{
read(n);
for1(i,,n) { read(wood[i].l); read(wood[i].w); }
solve(); }
} int main()
{
#ifndef ONLINE_JUDGE
freopen("wood.in","r",stdin);
freopen("wood.out","w",stdout);
#endif
init();
#ifndef ONLINE_JUDGE
fclose(stdin);
fclose(stdout);
system("wood.out");
#endif
return ;
}

POJ_1065_Wooden_Sticks_(动态规划,LIS+鸽笼原理)的更多相关文章

  1. HDU 5762 Teacher Bo (鸽笼原理) 2016杭电多校联合第三场

    题目:传送门. 题意:平面上有n个点,问是否存在四个点 (A,B,C,D)(A<B,C<D,A≠CorB≠D)使得AB的横纵坐标差的绝对值的和等于CD的横纵坐标差的绝对值的和,n<1 ...

  2. Gym 100851G Generators (vector+鸽笼原理)

    Problem G. Generators Input file: generators.in Output file: generators.outLittle Roman is studying li ...

  3. 非 动态规划---LIS

    题目:一个序列有N个数:A[1],A[2],…,A[N],求出最长非降子序列的长度.(见动态规划---LIS) /* 题目:一个序列有N个数:A[1],A[2],…,A[N],求出最长非降子序列的长度 ...

  4. poj 3370 鸽笼原理知识小结

    中学就听说过抽屉原理,可惜一直没机会见识,现在这题有鸽笼原理的结论,但其实知不知道鸽笼原理都可以做 先总结一下鸽笼原理: 有n+1件或n+1件以上的物品要放到n个抽屉中,那么至少有一个抽屉里有两个或两 ...

  5. poj 2356鸽笼原理水题

    关于鸽笼原理的知识看我写的另一篇博客 http://blog.csdn.net/u011026968/article/details/11564841 (需要说明的是,我写的代码在有答案时就输出结果了 ...

  6. UVA 10620 - A Flea on a Chessboard(鸽笼原理)

    UVA 10620 - A Flea on a Chessboard 题目链接 题意:给定一个跳蚤位置和移动方向.如今在一个国际象棋棋盘上,左下角为黑格,一个格子为s*s,推断是否能移动到白格子.问要 ...

  7. CodeChef February Challenge 2018 Points Inside A Polygon (鸽笼原理)

    题目链接  Points Inside A Polygon 题意  给定一个$n$个点的凸多边形,求出$[ \frac{n}{10}]\ $个凸多边形内的整点. 把$n$个点分成$4$类: 横坐标奇, ...

  8. 1393 0和1相等串 鸽笼原理 || 化简dp公式

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1393 正解一眼看出来的应该是鸽笼原理.记录每个位置的前缀和,就是dp[i ...

  9. Codeforce-Ozon Tech Challenge 2020-C. Kuroni and Impossible Calculation(鸽笼原理)

    To become the king of Codeforces, Kuroni has to solve the following problem. He is given n numbers a ...

随机推荐

  1. 那天有个小孩跟我说LINQ(六)转载

    2  LINQ TO SQL完结(代码下载)      我们还是接着上次那个简单的销售的业务数据库为例子,打开上次那个例子linq_Ch5 2.1 当数据库中的表建立了主外键 ①根据主键获取子表信息 ...

  2. 球面墨卡托(Spherical Mercator)

    地理信息描述空间位置相关的信息,在空间位置的表达中,需要基于空间参照系来保证数据精度以及不同数据源之间的相互叠加/空间分析操作.自Google Maps与2005年发布以来,电子地图服务与普通民众的日 ...

  3. ios PullToRefresh using animated GIF or image array or Vector image

    说说那些令人惊叹的下拉效果 1. 动画下拉,这里借用一下github的资源 优点:直接用gif图处理,下拉进度完全按照gif图运行时间,只要时间和下拉进度匹配就可以了, 效果很流畅 https://d ...

  4. 三、使用Maven构建简单的java项目

    前边,我刚搭建了Maven环境,还有给大家推荐了学习资源,这个小节,我们来就来,,简单的玩玩maven. 1.所需工具: 1.Eclipse     2.apache-maven-3.3.9   3. ...

  5. iOS开发——文本高度

    1.简单的计算文本高度 // 要计算的文本内容 NSString *testString = @"刘成利,软件工程专业毕业,iOS开发者,目前工作于北京,在证券金融领域从事iOS App开发 ...

  6. Fxcop 初体验

    代码质量对于软件项目的成败很重要,这点我想大家都明白.那么在一个软件团队中如何保证代码质量呢?对于这个问题不同的人可能会有不同的答案,对于我而言我觉得做好两点代码质量基本就可以保证了: 1.代码规范( ...

  7. 增加Swap内存

    增加512M Swap内存 #首先先建立一个分区,采用dd命令如下:dd if=/dev/zero of=/home/swap bs=1024 count=524288#(1个block为1K,512 ...

  8. RD / RMDIR Command

    Quote from: http://ss64.com/nt/rd.html RD Delete folder(s) Syntax RD pathname RD /S pathname RD /S / ...

  9. JS选择checkbox

    <script> window.onload = function () { //获取checkbox var ids1 = document.getElementsByName('Vot ...

  10. demo_08webStroage案例

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...