Show that matrices with distinct eigenvalues are dense in the space of all $n\times n$ matrices. (Use the Schur triangularisation)

Solution.  By the Schur triangularisation, for each matrix $A$, there exists a unitary $U$ such that $$\bex A=U\sex{\ba{ccc} \vLm_1&&*\\ &\ddots&\\ &&\vLm_s \ea},\quad \vLm_i=\sex{\ba{ccc} \lm_i&&*\\ &\ddots&\\ &&\lm_i \ea}_{n_i\times n_i}, \eex$$ with $\lm_1>\cdots>\lm_s$. For $\forall\ \ve>0$, we may replace the diagonal entries of $\vLm_i$ by $$\bex \lm_i+\frac{1}{ik} \eex$$ for $$\bex k>\max\sed{\frac{1}{n\ve},\max_{1\leq t<s}(\lm_t-\lm_{t+1})} \eex$$ to get a matrix $B_\ve$ with distinct eigenvalues with $\sen{A-B}_2<\ve$.

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.5的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  10. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. 【Linux工具】svn命令行使用实例

    引言 网上有这么多介绍 svn 使用的文章,为什么还要写?因为它们深入不浅出,平铺不分类,理论不实际,看完也记不住. 本文先介绍基本用法,后进行实例演练.不求大而全,只求熟练常用,自行用 svn he ...

  2. 判断浏览器是否支持某个css属性

    方法:直接判断浏览器是否支持某个CSS属性才是王道,document.documentElement.style 如:判断是否支持 transform if( 'MozTransform' in do ...

  3. phpcms v9后台多表查询分页代码

    phpcms v9里面自带的listinfo分页函数蛮好用的,可惜啊.不支持多表查询并分页. 看了一下前台模板层支持get标签,支持多表查询,支持分页.刚好可以把这个功能搬到后台来使用. 我们现在对g ...

  4. find grep

    grep grep -rn "hello,world!" * #递归查找当前目录下所有包含hello,world的文件 grep -C number pattern files : ...

  5. 2014年度辛星css教程夏季版第六节

    这一节我们就要讲到布局了,其实布局本身特别简单,但是要合理的布好局就不那么简单了,就像我们写文章一样,写一篇文章非常简单,但是要写一篇名著就很难了,这需要我们扎实的功底和对文学的理解,但是,千里之行, ...

  6. sublime c++ builder

    rt, mark { "cmd": ["g++", "${file}", "-o", "${file_path ...

  7. 微软职位内部推荐-ATG Engineer II

    微软近期Open的职位: ATG Engineer - GeneralistReady to work on some of the most advanced hardware on the pla ...

  8. cf Round 601

    A.The Two Routes(BFS) 给出n个城镇,有m条铁路,铁路的补图是公路,汽车和火车同时从1出发,通过每条路的时间为1,不能同时到达除了1和n的其它点,问他们到达n点最少要用多长时间. ...

  9. poj 3250 Bad Hair Day (单调栈)

    http://poj.org/problem?id=3250 Bad Hair Day Time Limit: 2000MS   Memory Limit: 65536K Total Submissi ...

  10. pscp实现Windows 和Linux 文件互相传输

    pscp 能够实现Windows 和Linux 间相互传输文件.下文将详细描述如何使用: 一.pscp 简要描述: PSCP (PuTTY Secure Copy client)是PuTTY 提供的文 ...