Show that matrices with distinct eigenvalues are dense in the space of all $n\times n$ matrices. (Use the Schur triangularisation)

Solution.  By the Schur triangularisation, for each matrix $A$, there exists a unitary $U$ such that $$\bex A=U\sex{\ba{ccc} \vLm_1&&*\\ &\ddots&\\ &&\vLm_s \ea},\quad \vLm_i=\sex{\ba{ccc} \lm_i&&*\\ &\ddots&\\ &&\lm_i \ea}_{n_i\times n_i}, \eex$$ with $\lm_1>\cdots>\lm_s$. For $\forall\ \ve>0$, we may replace the diagonal entries of $\vLm_i$ by $$\bex \lm_i+\frac{1}{ik} \eex$$ for $$\bex k>\max\sed{\frac{1}{n\ve},\max_{1\leq t<s}(\lm_t-\lm_{t+1})} \eex$$ to get a matrix $B_\ve$ with distinct eigenvalues with $\sen{A-B}_2<\ve$.

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.5的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  10. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. Linux初始root密码设置

    刚安装好的Linux系统是没有设置root用户密码的,下边介绍如何设置root用户的密码 第一步:sudo passwd 第二步:输入密码 第三步:确认密码 这样三个步骤过后root用户的密码就设置好 ...

  2. Javascript访问css样式信息

    DOM2级样式为style对象定义了一些属性和方法,可以通过这些方法属性来访问或者修改元素的样式信息: 1.cssText:可读写,在读的情况下以字符串形式返回元素的css代码,在写的情况下以字符串形 ...

  3. php 加密解密方法2

    <?php /* * @param $string 要加密或解决的字符串 * @param $operation 加密/解密 ENCODE加密, DECODE 解密 * @param $key ...

  4. json,serialze之格式

    <?php echo 'array-json:' . "\n"; $arr = array('key1'=>'value1', 'key2' => 'value2 ...

  5. ajax、json一些整理(3)

    写上面那些都是因为对ajax不熟悉 从w3c抄写JS原生ajax的东西补充一些基础 XMLHttpRequest 是 AJAX 的基础. XMLHttpRequest 对象 所有现代浏览器均支持 XM ...

  6. 第一部分实现功能:使用一个TabControl和一个Memo和TDictionary类实现文本临时存储

    效果图: 一期功能概要: a.双击tab关闭tab,双击tab右边空白添加tab(标题为以hhnnsszzz的时间格式命名) b.切换tab将数据存入dictionary,key为标题,value为m ...

  7. 【Django】基于Django架构网站代码的目录结构

     经典的Django项目源码目录结构 Django在一个项目的目录结构划分方面缺乏必要的规范.在Django的官方文档中并没有给出大型项目的代码建议目录结构,网上的文章也是根据项目的不同结构也有适当的 ...

  8. map遍历的三种基础用法

    java中遍历MAP的几种方法 Java代码 Map<String,String> map=new HashMap<String,String>();    map.put(& ...

  9. java项目使用的DBhelper类

    import java.io.*; import java.sql.*; import java.util.*; import javax.servlet.jsp.jstl.sql.*; public ...

  10. Android常用的工具类(转)

    主要介绍总结的Android开发中常用的工具类,大部分同样适用于Java.目前包括HttpUtils.DownloadManagerPro.ShellUtils.PackageUtils.Prefer ...